
Page | 1

Machine Learning
Machine Learning is making the computer learn from studying data and statistics.

Machine Learning is a step into the direction of artificial intelligence (AI).

Machine Learning is a program that analyses data and learns to predict the

outcome.

Where To Start?

In this tutorial we will go back to mathematics and study statistics, and how to
calculate important numbers based on data sets.

We will also learn how to use various Python modules to get the answers we need.

And we will learn how to make functions that are able to predict the outcome
based on what we have learned.

Data Set

In the mind of a computer, a data set is any collection of data. It can be anything
from an array to a complete database.

Example of an array:

[99,86,87,88,111,86,103,87,94,78,77,85,86]

Example of a database:

Carname Color Age Speed AutoPass

BMW red 5 99 Y

Volvo black 7 86 Y

VW gray 8 87 N

VW white 7 88 Y

Page | 2

Ford white 2 111 Y

VW white 17 86 Y

Tesla red 2 103 Y

BMW black 9 87 Y

Volvo gray 4 94 N

Ford white 11 78 N

Toyota gray 12 77 N

VW white 9 85 N

Toyota blue 6 86 Y

By looking at the array, we can guess that the average value is probably around
80 or 90, and we are also able to determine the highest value and the lowest

value, but what else can we do?

And by looking at the database we can see that the most popular color is white,

and the oldest car is 17 years, but what if we could predict if a car had an AutoPass,
just by looking at the other values?

That is what Machine Learning is for! Analyzing data and predicting the outcome!

In Machine Learning it is common to work with very large data sets. In this tutorial

we will try to make it as easy as possible to understand the different concepts of
machine learning, and we will work with small easy-to-understand data sets.

Page | 3

Data Types

To analyze data, it is important to know what type of data we are dealing with.

We can split the data types into three main categories:

• Numerical
• Categorical

• Ordinal

Numerical data are numbers, and can be split into two numerical categories:

• Discrete Data

- numbers that are limited to integers. Example: The number of cars
passing by.

• Continuous Data
- numbers that are of infinite value. Example: The price of an item, or the

size of an item

Categorical data are values that cannot be measured up against each other.
Example: a color value, or any yes/no values.

Ordinal data are like categorical data, but can be measured up against each
other. Example: school grades where A is better than B and so on.

By knowing the data type of your data source, you will be able to know what
technique to use when analyzing them.

You will learn more about statistics and analyzing data in the next chapters

Page | 4

Mean, Median, and Mode
What can we learn from looking at a group of numbers?

In Machine Learning (and in mathematics) there are often three values that
interests us:

• Mean - The average value
• Median - The mid point value
• Mode - The most common value

Example: We have registered the speed of 13 cars:

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

What is the average, the middle, or the most common speed value?

Mean

The mean value is the average value.

To calculate the mean, find the sum of all values, and divide the sum by the
number of values:

(99+86+87+88+111+86+103+87+94+78+77+85+86) / 13 = 89.77

The NumPy module has a method for this.

Example

Ex0201.py

"""

Use the NumPy mean() method to find the average speed

"""

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.mean(speed)

print(x)

Page | 5

Median
The median value is the value in the middle, after you have sorted all the values:

77, 78, 85, 86, 86, 86, 87, 87, 88, 94, 99, 103, 111

It is important that the numbers are sorted before you can find the median.

The NumPy module has a method for this:

Example

Mode

The Mode value is the value that appears the most number of times:

99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86 = 86

The SciPy module has a method for this.

Ex0202.py

"""

Use the NumPy median() method to find the middle value

"""

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.median(speed)

print(x)

Page | 6

Example

Chapter Summary

The Mean, Median, and Mode are techniques that are often used in Machine
Learning, so it is important to understand the concept behind them.

Ex0203.py

"""

Use the SciPy mode() method to find the number that

appears the most

"""

from scipy import stats

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = stats.mode(speed)

print(x)

Page | 7

Standard Deviation
Standard deviation is a number that describes how spread out the values are.

A low standard deviation means that most of the numbers are close to the mean
(average) value.

A high standard deviation means that the values are spread out over a wider
range.

Example: This time we have registered the speed of 7 cars:

speed = [86,87,88,86,87,85,86]

The standard deviation is:

0.9

Meaning that most of the values are within the range of 0.9 from the mean value,
which is 86.4.

Let us do the same with a selection of numbers with a wider range:

speed = [32,111,138,28,59,77,97]

The standard deviation is:

37.85

Meaning that most of the values are within the range of 37.85 from the mean
value, which is 77.4.

As you can see, a higher standard deviation indicates that the values are spread

out over a wider range.

The NumPy module has a method to calculate the standard deviation:

Page | 8

Example

Variance

Variance is another number that indicates how spread out the values are.

In fact, if you take the square root of the variance, you get the standard deviation!

Or the other way around, if you multiply the standard deviation by itself, you get
the variance!

To calculate the variance, you have to do as follows:

1. Find the mean:

(32+111+138+28+59+77+97) / 7 = 77.4

2. For each value: find the difference from the mean:

 32 - 77.4 = -45.4

111 - 77.4 = 33.6

138 - 77.4 = 60.6

 28 - 77.4 = -49.4

 59 - 77.4 = -18.4

 77 - 77.4 = - 0.4

 97 - 77.4 = 19.6

Ex0301.py

"""

Use the NumPy std() method to find the standard

deviation

"""

import numpy

speed = [86,87,88,86,87,85,86]

x = numpy.std(speed)

print(x)

Page | 9

3. For each difference: find the square value:

(-45.4)2 = 2061.16
 (33.6)2 = 1128.96
 (60.6)2 = 3672.36
(-49.4)2 = 2440.36
(-18.4)2 = 338.56
(- 0.4)2 = 0.16
 (19.6)2 = 384.16

4. The variance is the average number of these squared differences:

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1432.2

Luckily, NumPy has a method to calculate the variance:

Example

Standard Deviation

As we have learned, the formula to find the standard deviation is the square root
of the variance:

√1432.25 = 37.85

Or, as in the example from before, use the NumPy to calculate the standard

deviation:

Ex0302.py

"""

Use the NumPy var() method to find the variance

"""

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.var(speed)

print(x)

Page | 10

Example

Symbols

Standard Deviation is often represented by the symbol Sigma: σ

Variance is often represented by the symbol Sigma Squared: σ2

Chapter Summary

The Standard Deviation and Variance are terms that are often used in Machine
Learning, so it is important to understand how to get them, and the concept
behind them.

Ex0303.py

"""

Use the NumPy std() method to find the standard

deviation

"""

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.std(speed)

print(x)

Page | 11

Percentiles
Percentiles are used in statistics to give you a number that describes the value
that a given percent of the values are lower than.

Example: Let's say we have an array of the ages of all the people that live in a

street.

ages = [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31]

What is the 75. percentile? The answer is 43, meaning that 75% of the people
are 43 or younger.

The NumPy module has a method for finding the specified percentile:

Example

Example

Ex0401.py

"""

Use the NumPy percentile() method to find the

percentiles

"""

import numpy

ages =

[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,6

1,31]

x = numpy.percentile(ages, 75)

print(x)

Ex0402.py

"""

What is the age that 90% of the people are younger

than?

"""

import numpy

ages =

Page | 12

[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,6

1,31]

x = numpy.percentile(ages, 90)

print(x)

Page | 13

Data Distribution
Earlier in this tutorial we have worked with very small amounts of data in our
examples, just to understand the different concepts.

In the real world, the data sets are much bigger, but it can be difficult to gather

real world data, at least at an early stage of a project.

How Can we Get Big Data Sets?

To create big data sets for testing, we use the Python module NumPy, which
comes with a number of methods to create random data sets, of any size.

Example

Ex0501.py

"""

Create an array containing 250 random floats between 0

and 5

"""

import numpy

x = numpy.random.uniform(0.0, 5.0, 250)

print(x)

Page | 14

Histogram

To visualize the data set we can draw a histogram with the data we collected.

We will use the Python module Matplotlib to draw a histogram.

Example

Result:

Ex0502.py

"""

Draw a histogram

"""

import numpy

import matplotlib.pyplot as plt

x = numpy.random.uniform(0.0, 5.0, 250)

plt.hist(x, 5)

plt.show()

Page | 15

Histogram Explained

We use the array from the example above to draw a histogram with 5 bars.

The first bar represents how many values in the array are between 0 and 1.

The second bar represents how many values are between 1 and 2.

Etc.

Which gives us this result:

• 52 values are between 0 and 1
• 48 values are between 1 and 2

• 49 values are between 2 and 3
• 51 values are between 3 and 4

• 50 values are between 4 and 5

Note: The array values are random numbers and will not show the exact same
result on your computer.

Big Data Distributions

An array containing 250 values is not considered very big, but now you know how
to create a random set of values, and by changing the parameters, you can create

the data set as big as you want.

Example

Ex0503.py

"""

Create an array with 100000 random numbers, and

display them using a histogram with 100 bars

"""

import numpy

import matplotlib.pyplot as plt

x = numpy.random.uniform(0.0, 5.0, 100000)

plt.hist(x, 100)

plt.show()

Page | 16

Normal Data Distribution
In the previous chapter we learned how to create a completely random array, of
a given size, and between two given values.

In this chapter we will learn how to create an array where the values are

concentrated around a given value.

In probability theory this kind of data distribution is known as the normal data
distribution, or the Gaussian data distribution, after the mathematician Carl

Friedrich Gauss who came up with the formula of this data distribution.

Example

Result:

Ex0601.py

"""

A typical normal data distribution

"""

import numpy

import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)

plt.show()

Page | 17

Note: A normal distribution graph is also known as the bell curve because of it's
characteristic shape of a bell.

Histogram Explained

We use the array from the numpy.random.normal() method, with 100000 values, to

draw a histogram with 100 bars.

We specify that the mean value is 5.0, and the standard deviation is 1.0.

Meaning that the values should be concentrated around 5.0, and rarely further
away than 1.0 from the mean.

And as you can see from the histogram, most values are between 4.0 and 6.0,
with a top at approximately 5.0.

Page | 18

Scatter Plot
A scatter plot is a diagram where each value in the data set is represented by a
dot.

The Matplotlib module has a method for drawing scatter plots, it needs two arrays
of the same length, one for the values of the x-axis, and one for the values of the

y-axis:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

The x array represents the age of each car.

The y array represents the speed of each car.

Page | 19

Example

Result:

Ex0701.py

"""

Use the scatter() method to draw a scatter plot

diagram

"""

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)

plt.show()

Page | 20

Scatter Plot Explained

The x-axis represents ages, and the y-axis represents speeds.

What we can read from the diagram is that the two fastest cars were both 2 years
old, and the slowest car was 12 years old.

Note: It seems that the newer the car, the faster it drives, but that could be a
coincidence, after all we only registered 13 cars.

Random Data Distributions

In Machine Learning the data sets can contain thousands-, or even millions, of
values.

You might not have real world data when you are testing an algorithm, you might
have to use randomly generated values.

As we have learned in the previous chapter, the NumPy module can help us with
that!

Let us create two arrays that are both filled with 1000 random numbers from a
normal data distribution.

The first array will have the mean set to 5.0 with a standard deviation of 1.0.

The second array will have the mean set to 10.0 with a standard deviation of 2.0:

Example

Ex0702.py

"""

A scatter plot with 1000 dots

"""

import numpy

import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 1000)

y = numpy.random.normal(10.0, 2.0, 1000)

plt.scatter(x, y)

plt.show()

Page | 21

Result:

Scatter Plot Explained

We can see that the dots are concentrated around the value 5 on the x-axis, and
10 on the y-axis.

We can also see that the spread is wider on the y-axis than on the x-axis.

Page | 22

Linear Regression
The term regression is used when you try to find the relationship between
variables.

In Machine Learning, and in statistical modeling, that relationship is used to

predict the outcome of future events.

Linear Regression

Linear regression uses the relationship between the data-points to draw a straight
line through all them.

This line can be used to predict future values.

In Machine Learning, predicting the future is very important.

Page | 23

How Does it Work?

Python has methods for finding a relationship between data-points and to draw a
line of linear regression. We will show you how to use these methods instead of

going through the mathematic formula.

In the example below, the x-axis represents age, and the y-axis represents speed.

We have registered the age and speed of 13 cars as they were passing a tollbooth.
Let us see if the data we collected could be used in a linear regression:

Example

Result:

Ex0801.py

"""

Start by drawing a scatter plot

"""

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)

plt.show()

Page | 24

Example

Result:

Ex0802.py

"""

Start by drawing a scatter plot

"""

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)

plt.show()

Page | 25

Example Explained

Import the modules you need.

import matplotlib.pyplot as plt

from scipy import stats

Create the arrays that represent the values of the x and y axis:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

Execute a method that returns some important key values of Linear Regression:

slope, intercept, r, p, std_err = stats.linregress(x, y)

Create a function that uses the slope and intercept values to return a new value.

This new value represents where on the y-axis the corresponding x value will be
placed:

def myfunc(x):

 return slope * x + intercept

Run each value of the x array through the function. This will result in a new array

with new values for the y-axis:

mymodel = list(map(myfunc, x))

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of linear regression:

plt.plot(x, mymodel)

Display the diagram:

plt.show()

Page | 26

R for Relationship

It is important to know how the relationship between the values of the x-axis and
the values of the y-axis is, if there are no relationship the linear regression cannot

be used to predict anything.

This relationship - the coefficient of correlation - is called r.

The r value ranges from -1 to 1, where 0 means no relationship, and 1 (and -1)

means 100% related.

Python and the Scipy module will compute this value for you, all you have to do
is feed it with the x and y values.

Example

Note: The result -0.76 shows that there is a relationship, not perfect, but it

indicates that we could use linear regression in future predictions.

Predict Future Values

Now we can use the information we have gathered to predict future values.

Example: Let us try to predict the speed of a 10 years old car.

To do so, we need the same myfunc() function from the example above:

Ex0803.py

"""

How well does my data fit in a linear regression?

"""

from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x,

y)

print(r)

Page | 27

def myfunc(x):

 return slope * x + intercept

Example

The example predicted a speed at 85.6, which we also could read from the
diagram:

Ex0804.py

"""

Predict the speed of a 10 years old car

"""

from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):

 return slope * x + intercept

speed = myfunc(10)

print(speed)

Page | 28

Bad Fit?

Let us create an example where linear regression would not be the best method
to predict future values.

Example

Ex0805.py

"""

These values for the x- and y-axis should result in a very

bad fit for linear regression

"""

import matplotlib.pyplot as plt

from scipy import stats

x =

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]

y =

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):

 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)

plt.plot(x, mymodel)

plt.show()

Page | 29

Result:

And the r for relationship?

Example

The result: 0.013 indicates a very bad relationship, and tells us that this data set
is not suitable for linear regression

Ex0806.py

"""

You should get a very low r value

"""

import numpy

from scipy import stats

x =

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]

y =

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

slope, intercept, r, p, std_err = stats.linregress(x, y)

print(r)

Page | 30

Polynomial Regression
If your data points clearly will not fit a linear regression (a straight line through
all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship between the

variables x and y to find the best way to draw a line through the data points.

How Does it Work?

Python has methods for finding a relationship between data-points and to draw a
line of polynomial regression. We will show you how to use these methods instead
of going through the mathematic formula.

In the example below, we have registered 18 cars as they were passing a certain
tollbooth.

We have registered the car's speed, and the time of day (hour) the passing
occurred.

The x-axis represents the hours of the day and the y-axis represents the speed:

Page | 31

Example

Result:

Ex0901.py

"""

Start by drawing a scatter plot

"""

import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]

y =

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

plt.scatter(x, y)

plt.show()

Page | 32

Example

Result:

Ex0902.py
"""

Import numpy and matplotlib then draw the line of Polynomial

Regression

"""

import numpy

import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]

y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(1, 22, 100)

plt.scatter(x, y)

plt.plot(myline, mymodel(myline))

plt.show()

Page | 33

Example Explained

Import the modules you need.

import numpy

import matplotlib.pyplot as plt

Create the arrays that represent the values of the x and y axis:

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]

y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

NumPy has a method that lets us make a polynomial model:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Then specify how the line will display, we start at position 1, and end at position
22:

myline = numpy.linspace(1, 22, 100)

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of polynomial regression:

plt.plot(myline, mymodel(myline))

Display the diagram:’

plt.show()

Page | 34

R-Squared

It is important to know how well the relationship between the values of the x-
and y-axis is, if there are no relationship the polynomial regression cannot be

used to predict anything.

The relationship is measured with a value called the r-squared.

The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1
means 100% related.

Python and the Sklearn module will compute this value for you, all you have to
do is feed it with the x and y arrays:

Note: The result 0.94 shows that there is a very good relationship, and we can
use polynomial regression in future predictions.

Predict Future Values

Now we can use the information we have gathered to predict future values.

Example: Let us try to predict the speed of a car that passes the tollbooth at

around the time 17:00:

To do so, we need the same mymodel array from the example above:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Ex0903.py

"""

How well does my data fit in a polynomial regression?

"""

import numpy

from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]

y =

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))

Page | 35

Example

The example predicted a speed to be 88.87, which we also could read from the

diagram:

Ex0904.py

"""

Predict the speed of a car passing at 17:00

"""

import numpy

from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]

y =

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

speed = mymodel(17)

print(speed)

Page | 36

Bad Fit?

Let us create an example where polynomial regression would not be the best
method to predict future values.

Example

Ex0905.py

"""

These values for the x- and y-axis should result in a very

bad fit for polynomial regression

"""

import numpy

import matplotlib.pyplot as plt

x =

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]

y =

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(2, 95, 100)

plt.scatter(x, y)

plt.plot(myline, mymodel(myline))

plt.show()

Page | 37

Result:

 And the r-squared value?

Example

The result: 0.00995 indicates a very bad relationship, and tells us that this data

set is not suitable for polynomial regression.

Ex0906.py

"""

You should get a very low r-squared value

"""

import numpy

from sklearn.metrics import r2_score

x =

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]

y =

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))

Page | 38

Multiple Regression
Multiple regression is like linear regression, but with more than one independent
value, meaning that we try to predict a value based on two or more variables.

Take a look at the data set below, it contains some information about cars.

Car Model Volume Weight CO2

Toyota Aygo 1000 790 99

Mitsubishi Space Star 1200 1160 95

Skoda Citigo 1000 929 95

Fiat 500 900 865 90

Mini Cooper 1500 1140 105

VW Up! 1000 929 105

Skoda Fabia 1400 1109 90

Mercedes A-Class 1500 1365 92

Ford Fiesta 1500 1112 98

Audi A1 1600 1150 99

Hyundai I20 1100 980 99

Suzuki Swift 1300 990 101

Ford Fiesta 1000 1112 99

Honda Civic 1600 1252 94

Hundai I30 1600 1326 97

Opel Astra 1600 1330 97

BMW 1 1600 1365 99

Mazda 3 2200 1280 104

Page | 39

Skoda Rapid 1600 1119 104

Ford Focus 2000 1328 105

Ford Mondeo 1600 1584 94

Opel Insignia 2000 1428 99

Mercedes C-Class 2100 1365 99

Skoda Octavia 1600 1415 99

Volvo S60 2000 1415 99

Mercedes CLA 1500 1465 102

Audi A4 2000 1490 104

Audi A6 2000 1725 114

Volvo V70 1600 1523 109

BMW 5 2000 1705 114

Mercedes E-Class 2100 1605 115

Volvo XC70 2000 1746 117

Ford B-Max 1600 1235 104

BMW 2 1600 1390 108

Opel Zafira 1600 1405 109

Mercedes SLK 2500 1395 120

We can predict the CO2 emission of a car based on the size of the engine, but
with multiple regression we can throw in more variables, like the weight of the

car, to make the prediction more accurate.

Page | 40

How Does it Work?

In Python we have modules that will do the work for us. Start by importing the
Pandas module.

import pandas

The Pandas module allows us to read csv files and return a DataFrame object.

df = pandas.read_csv("data.csv")

Then make a list of the independent values and call this variable X.

Put the dependent values in a variable called y.

X = df[['Weight', 'Volume']]

y = df['CO2']

Tip: It is common to name the list of independent values with a upper case X,
and the list of dependent values with a lower case y.

We will use some methods from the sklearn module, so we will have to import
that module as well:

from sklearn import linear_model

From the sklearn module we will use the LinearRegression() method to create a

linear regression object.

This object has a method called fit() that takes the independent and dependent

values as parameters and fills the regression object with data that describes the
relationship:

regr = linear_model.LinearRegression()

regr.fit(X, y)

Now we have a regression object that are ready to predict CO2 values based on

a car's weight and volume:

#predict the CO2 emission of a car where the weight is 2300kg, and

the volume is 1300cm3:

predictedCO2 = regr.predict([[2300, 1300]])

Page | 41

Example

We have predicted that a car with 1.3 liter engine, and a weight of 2300 kg, will

release approximately 107 grams of CO2 for every kilometer it drives.

Coefficient

The coefficient is a factor that describes the relationship with an unknown variable.

Example: if x is a variable, then 2x is x two times. x is the unknown variable, and

the number 2 is the coefficient.

In this case, we can ask for the coefficient value of weight against CO2, and for

volume against CO2. The answer(s) we get tells us what would happen if we
increase, or decrease, one of the independent values.

Ex1001.py

"""

See the whole example in action

"""

import pandas

from sklearn import linear_model

df = pandas.read_csv("data.csv")

X = df[['Weight', 'Volume']]

y = df['CO2']

regr = linear_model.LinearRegression()

regr.fit(X, y)

#predict the CO2 emission of a car where the weight is

2300kg, and the volume is 1300cm3:

predictedCO2 = regr.predict([[2300, 1300]])

print(predictedCO2)

Page | 42

Example

Result:[0.00755095 0.00780526]

[0.00755095 0.00780526]

Result Explained

The result array represents the coefficient values of weight and volume.

Weight: 0.00755095
Volume: 0.00780526

These values tell us that if the weight increase by 1kg, the CO2 emission increases
by 0.00755095g.

And if the engine size (Volume) increases by 1 cm3, the CO2 emission increases
by 0.00780526 g.

I think that is a fair guess, but let test it!

We have already predicted that if a car with a 1300cm3 engine weighs 2300kg,
the CO2 emission will be approximately 107g.

What if we increase the weight with 1000kg?

Ex1002.py

"""

Print the coefficient values of the regression object

"""

import pandas

from sklearn import linear_model

df = pandas.read_csv("data.csv")

X = df[['Weight', 'Volume']]

y = df['CO2']

regr = linear_model.LinearRegression()

regr.fit(X, y)

print(regr.coef_)

Page | 43

Example

Result:

[114.75968007]

We have predicted that a car with 1.3 liter engine, and a weight of 3300 kg, will

release approximately 115 grams of CO2 for every kilometer it drives.

Which shows that the coefficient of 0.00755095 is correct:

107.2087328 + (1000 * 0.00755095) = 114.75968

Ex1003.py

"""

Copy the example from before, but change the weight from

2300 to 3300

"""

import pandas

from sklearn import linear_model

df = pandas.read_csv("data.csv")

X = df[['Weight', 'Volume']]

y = df['CO2']

regr = linear_model.LinearRegression()

regr.fit(X, y)

predictedCO2 = regr.predict([[3300, 1300]])

print(predictedCO2)

Page | 44

Scale

Scale Features

When your data has different values, and even different measurement units, it
can be difficult to compare them. What is kilograms compared to meters? Or

altitude compared to time?

The answer to this problem is scaling. We can scale data into new values that are

easier to compare.

Take a look at the table below, it is the same data set that we used in the multiple
regression chapter, but this time the volume column contains values

in liters instead of cm3 (1.0 instead of 1000).

Car Model Volume Weight CO2

Toyota Aygo 1.0 790 99

Mitsubishi Space Star 1.2 1160 95

Skoda Citigo 1.0 929 95

Fiat 500 0.9 865 90

Mini Cooper 1.5 1140 105

VW Up! 1.0 929 105

Skoda Fabia 1.4 1109 90

Mercedes A-Class 1.5 1365 92

Ford Fiesta 1.5 1112 98

Audi A1 1.6 1150 99

Hyundai I20 1.1 980 99

Suzuki Swift 1.3 990 101

Ford Fiesta 1.0 1112 99

Honda Civic 1.6 1252 94

Page | 45

Hundai I30 1.6 1326 97

Opel Astra 1.6 1330 97

BMW 1 1.6 1365 99

Mazda 3 2.2 1280 104

Skoda Rapid 1.6 1119 104

Ford Focus 2.0 1328 105

Ford Mondeo 1.6 1584 94

Opel Insignia 2.0 1428 99

Mercedes C-Class 2.1 1365 99

Skoda Octavia 1.6 1415 99

Volvo S60 2.0 1415 99

Mercedes CLA 1.5 1465 102

Audi A4 2.0 1490 104

Audi A6 2.0 1725 114

Volvo V70 1.6 1523 109

BMW 5 2.0 1705 114

Mercedes E-Class 2.1 1605 115

Volvo XC70 2.0 1746 117

Ford B-Max 1.6 1235 104

BMW 2 1.6 1390 108

Opel Zafira 1.6 1405 109

Mercedes SLK 2.5 1395 120

Page | 46

It can be difficult to compare the volume 1.0 with the weight 790, but if we scale
them both into comparable values, we can easily see how much one value is

compared to the other.

There are different methods for scaling data, in this tutorial we will use a method

called standardization.

The standardization method uses this formula:

z = (x - u) / s

Where z is the new value, x is the original value, u is the mean and s is the

standard deviation.

If you take the weight column from the data set above, the first value is 790,

and the scaled value will be:

(790 - 1292.23) / 238.74 = -2.1

If you take the volume column from the data set above, the first value is 1.0,

and the scaled value will be:

(1.0 - 1.61) / 0.38 = -1.59

Now you can compare -2.1 with -1.59 instead of comparing 790 with 1.0.

You do not have to do this manually, the Python sklearn module has a method
called StandardScaler() which returns a Scaler object with methods for

transforming data sets.

https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_mean1
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_std1
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_mean2
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_std2

Page | 47

Example

Result:

Note that the first two values are -2.1 and -1.59, which corresponds to our
calculations:

[[-2.10389253 -1.59336644]

 [-0.55407235 -1.07190106]

 [-1.52166278 -1.59336644]

 [-1.78973979 -1.85409913]

 [-0.63784641 -0.28970299]

 [-1.52166278 -1.59336644]

 [-0.76769621 -0.55043568]

 [0.3046118 -0.28970299]

 [-0.7551301 -0.28970299]

 [-0.59595938 -0.0289703]

 [-1.30803892 -1.33263375]

 [-1.26615189 -0.81116837]

 [-0.7551301 -1.59336644]

 [-0.16871166 -0.0289703]

 [0.14125238 -0.0289703]

 [0.15800719 -0.0289703]

 [0.3046118 -0.0289703]

 [-0.05142797 1.53542584]

 [-0.72580918 -0.0289703]

Ex1101.py

"""

Scale all values in the Weight and Volume columns

"""

import pandas

from sklearn import linear_model

from sklearn.preprocessing import StandardScaler

scale = StandardScaler()

df = pandas.read_csv("data2.csv")

X = df[['Weight', 'Volume']]

scaledX = scale.fit_transform(X)

print(scaledX)

Page | 48

 [0.14962979 1.01396046]

 [1.2219378 -0.0289703]

 [0.5685001 1.01396046]

 [0.3046118 1.27469315]

 [0.51404696 -0.0289703]

 [0.51404696 1.01396046]

 [0.72348212 -0.28970299]

 [0.8281997 1.01396046]

 [1.81254495 1.01396046]

 [0.96642691 -0.0289703]

 [1.72877089 1.01396046]

 [1.30990057 1.27469315]

 [1.90050772 1.01396046]

 [-0.23991961 -0.0289703]

 [0.40932938 -0.0289703]

 [0.47215993 -0.0289703]

 [0.4302729 2.31762392]]

Predict CO2 Values

The task in the Multiple Regression chapter was to predict the CO2 emission from
a car when you only knew its weight and volume.

When the data set is scaled, you will have to use the scale when you predict

values:

Page | 49

Example

Result:

[107.2087328]

Ex1102.py

"""

Predict the CO2 emission from a 1.3 liter car that weighs

2300 kilograms

"""

import pandas

from sklearn import linear_model

from sklearn.preprocessing import StandardScaler

scale = StandardScaler()

df = pandas.read_csv("data2.csv")

X = df[['Weight', 'Volume']]

y = df['CO2']

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()

regr.fit(scaledX, y)

scaled = scale.transform([[2300, 1.3]])

predictedCO2 = regr.predict([scaled[0]])

print(predictedCO2)

Page | 50

Train/Test

Evaluate Your Model

In Machine Learning we create models to predict the outcome of certain events,
like in the previous chapter where we predicted the CO2 emission of a car when

we knew the weight and engine size.

To measure if the model is good enough, we can use a method called Train/Test.

What is Train/Test

Train/Test is a method to measure the accuracy of your model.

It is called Train/Test because you split the data set into two sets: a training set
and a testing set.

80% for training, and 20% for testing.

You train the model using the training set.

You test the model using the testing set.

Train the model means create the model.

Test the model means test the accuracy of the model.

Page | 51

Start With a Data Set

Start with a data set you want to test.

Our data set illustrates 100 customers in a shop, and their shopping habits.

Example

Result:

The x axis represents the number of minutes before making a purchase.

The y axis represents the amount of money spent on the purchase.

Ex1201.py

import numpy

import matplotlib.pyplot as plt

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

plt.scatter(x, y)

plt.show()

Page | 52

Split Into Train/Test

The training set should be a random selection of 80% of the original data.

The testing set should be the remaining 20%.

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

Display the Training Set

Display the same scatter plot with the training set:

Example

Ex1202.py

import numpy

import matplotlib.pyplot as plt

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

plt.scatter(train_x, train_y)

plt.show()

Page | 53

Result:

It looks like the original data set, so it seems to be a fair selection:

Page | 54

Display the Testing Set

To make sure the testing set is not completely different, we will take a look at the
testing set as well.

Example

Result:

The testing set also looks like the original data set:

Ex1203.py

import numpy

import matplotlib.pyplot as plt

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

plt.scatter(train_x, train_y)

plt.show()

Page | 55

Fit the Data Set

What does the data set look like? In my opinion I think the best fit would be
a polynomial regression, so let us draw a line of polynomial regression.

To draw a line through the data points, we use the plot() method of the matplotlib

module:

Example

Ex1204.py

"""

Draw a polynomial regression line through the data points

"""

import numpy

import matplotlib.pyplot as plt

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y,

4))

myline = numpy.linspace(0, 6, 100)

plt.scatter(train_x, train_y)

plt.plot(myline, mymodel(myline))

plt.show()

Page | 56

Result:

The result can back my suggestion of the data set fitting a polynomial regression,
even though it would give us some weird results if we try to predict values outside

of the data set. Example: the line indicates that a customer spending 6 minutes
in the shop would make a purchase worth 200. That is probably a sign of

overfitting.

But what about the R-squared score? The R-squared score is a good indicator of

how well my data set is fitting the model.

R2

Remember R2, also known as R-squared?

It measures the relationship between the x axis and the y axis, and the value
ranges from 0 to 1, where 0 means no relationship, and 1 means totally related.

The sklearn module has a method called r2_score() that will help us find this

relationship.

In this case we would like to measure the relationship between the minutes a
customer stays in the shop and how much money they spend.

Page | 57

Example

Note: The result 0.799 shows that there is a OK relationship.

Ex1205.py

"""

How well does my training data fit in a polynomial

regression?

"""

import numpy

from sklearn.metrics import r2_score

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y,

4))

r2 = r2_score(train_y, mymodel(train_x))

print(r2)

Page | 58

Bring in the Testing Set

Now we have made a model that is OK, at least when it comes to training data.

Now we want to test the model with the testing data as well, to see if gives us

the same result.

Example

Note: The result 0.809 shows that the model fits the testing set as well, and we
are confident that we can use the model to predict future values.

Ex1206.py

"""

Let us find the R2 score when using testing data

"""

import numpy

from sklearn.metrics import r2_score

numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)

y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]

train_y = y[:80]

test_x = x[80:]

test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y,

4))

r2 = r2_score(test_y, mymodel(test_x))

print(r2)

Page | 59

Predict Values

Now that we have established that our model is OK, we can start predicting new
values.

Example

How much money will a buying customer spend, if she or he stays in the shop for
5 minutes?

print(mymodel(5))

The example predicted the customer to spend 22.88 dollars, as seems to
correspond to the diagram:

Page | 60

Decision Tree

In this chapter we will show you how to make a "Decision Tree". A Decision Tree
is a Flow Chart, and can help you make decisions based on previous experience.

In the example, a person will try to decide if he/she should go to a comedy show
or not.

Page | 61

Luckily our example person has registered every time there was a comedy show
in town, and registered some information about the comedian, and also registered

if he/she went or not.

Age Experience Rank Nationality Go

36 10 9 UK NO

42 12 4 USA NO

23 4 6 N NO

52 4 4 USA NO

43 21 8 USA YES

44 14 5 UK NO

66 3 7 N YES

35 14 9 UK YES

52 13 7 N YES

35 5 9 N YES

24 3 5 USA NO

18 3 7 UK YES

45 9 9 UK YES

Now, based on this data set, Python can create a decision tree that can be used

to decide if any new shows are worth attending to.

Page | 62

How Does it Work?

First, read the dataset with pandas:

Example

To make a decision tree, all data has to be numerical.

We have to convert the non-numerical columns 'Nationality' and 'Go' into
numerical values.

Pandas has a map() method that takes a dictionary with information on how to

convert the values.

{'UK': 0, 'USA': 1, 'N': 2}

Means convert the values 'UK' to 0, 'USA' to 1, and 'N' to 2.

Example

Ex1301.py

"""

Read and print the data set

"""

import pandas

df = pandas.read_csv("data3.csv")

print(df)

Ex1302.py

"""

Change string values into numerical values

"""

import pandas

df = pandas.read_csv("data3.csv")

d = {'UK': 0, 'USA': 1, 'N': 2}

df['Nationality'] = df['Nationality'].map(d)

d = {'YES': 1, 'NO': 0}

df['Go'] = df['Go'].map(d)\

print(df)

Page | 63

Then we have to separate the feature columns from the target column.

The feature columns are the columns that we try to predict from, and the target

column is the column with the values we try to predict.

Example

Now we can create the actual decision tree, fit it with our details. Start by

importing the modules we need:

Ex1303.py

"""

X is the feature columns, y is the target column

"""

import pandas

df = pandas.read_csv("data3.csv")

d = {'UK': 0, 'USA': 1, 'N': 2}

df['Nationality'] = df['Nationality'].map(d)

d = {'YES': 1, 'NO': 0}

df['Go'] = df['Go'].map(d)

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]

y = df['Go']

print(X)

print(y)

Page | 64

Example

Ex1304.py

"""

Create and display a Decision Tree

"""

import pandas

from sklearn import tree

from sklearn.tree import DecisionTreeClassifier

import matplotlib.pyplot as plt

df = pandas.read_csv("data3.csv")

d = {'UK': 0, 'USA': 1, 'N': 2}

df['Nationality'] = df['Nationality'].map(d)

d = {'YES': 1, 'NO': 0}

df['Go'] = df['Go'].map(d)

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]

y = df['Go']

dtree = DecisionTreeClassifier()

dtree = dtree.fit(X, y)

tree.plot_tree(dtree, feature_names=features)

Page | 65

Result Explained

The decision tree uses your earlier decisions to calculate the odds for you to
wanting to go see a comedian or not.

Let us read the different aspects of the decision tree:

Rank

Rank <= 6.5 means that every comedian with a rank of 6.5 or lower will follow

the True arrow (to the left), and the rest will follow the False arrow (to the right).

gini = 0.497 refers to the quality of the split, and is always a number between 0.0

and 0.5, where 0.0 would mean all of the samples got the same result, and 0.5

would mean that the split is done exactly in the middle.

samples = 13 means that there are 13 comedians left at this point in the decision,

which is all of them since this is the first step.

value = [6, 7] means that of these 13 comedians, 6 will get a "NO", and 7 will get

a "GO".

Gini

There are many ways to split the samples, we use the GINI method in this tutorial.

The Gini method uses this formula:

Gini = 1 - (x/n)2 - (y/n)2

Where x is the number of positive answers("GO"), n is the number of samples,

and y is the number of negative answers ("NO"), which gives us this calculation:

1 - (7 / 13)2 - (6 / 13)2 = 0.497

Page | 66

The next step contains two boxes, one box for the comedians with a 'Rank' of 6.5
or lower, and one box with the rest.

True - 5 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 5 means that there are 5 comedians left in this branch (5 comedian with

a Rank of 6.5 or lower).

value = [5, 0] means that 5 will get a "NO" and 0 will get a "GO".

False - 8 Comedians Continue:

Nationality

Nationality <= 0.5 means that the comedians with a nationality value of less than

0.5 will follow the arrow to the left (which means everyone from the UK,), and

the rest will follow the arrow to the right.

gini = 0.219 means that about 22% of the samples would go in one direction.

samples = 8 means that there are 8 comedians left in this branch (8 comedian with

a Rank higher than 6.5).

value = [1, 7] means that of these 8 comedians, 1 will get a "NO" and 7 will get a

"GO".

Page | 67

True - 4 Comedians Continue:

Age

Age <= 35.5 means that comedians at the age of 35.5 or younger will follow the

arrow to the left, and the rest will follow the arrow to the right.

gini = 0.375 means that about 37,5% of the samples would go in one direction.

samples = 4 means that there are 4 comedians left in this branch (4 comedians

from the UK).

value = [1, 3] means that of these 4 comedians, 1 will get a "NO" and 3 will get a

"GO".

False - 4 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 4 means that there are 4 comedians left in this branch (4 comedians not

from the UK).

value = [0, 4] means that of these 4 comedians, 0 will get a "NO" and 4 will get a

"GO".

Page | 68

True - 2 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 2 means that there are 2 comedians left in this branch (2 comedians at

the age 35.5 or younger).

value = [0, 2] means that of these 2 comedians, 0 will get a "NO" and 2 will get a

"GO".

False - 2 Comedians Continue:

Experience

Experience <= 9.5 means that comedians with 9.5 years of experience, or less, will

follow the arrow to the left, and the rest will follow the arrow to the right.

gini = 0.5 means that 50% of the samples would go in one direction.

samples = 2 means that there are 2 comedians left in this branch (2 comedians

older than 35.5).

value = [1, 1] means that of these 2 comedians, 1 will get a "NO" and 1 will get a

"GO".

Page | 69

True - 1 Comedian Ends Here:

gini = 0.0 means all of the samples got the same result.

samples = 1 means that there is 1 comedian left in this branch (1 comedian with

9.5 years of experience or less).

value = [0, 1] means that 0 will get a "NO" and 1 will get a "GO".

False - 1 Comedian Ends Here:

gini = 0.0 means all of the samples got the same result.

samples = 1 means that there is 1 comedians left in this branch (1 comedian with

more than 9.5 years of experience).

value = [1, 0] means that 1 will get a "NO" and 0 will get a "GO".

Page | 70

Predict Values

We can use the Decision Tree to predict new values.

Example: Should I go see a show starring a 40 years old American comedian,

with 10 years of experience, and a comedy ranking of 7?

Example

Ex1305.py

"""

Use predict() method to predict new values

"""

import pandas

from sklearn import tree

from sklearn.tree import DecisionTreeClassifier

df = pandas.read_csv("data3.csv")

d = {'UK': 0, 'USA': 1, 'N': 2}

df['Nationality'] = df['Nationality'].map(d)

d = {'YES': 1, 'NO': 0}

df['Go'] = df['Go'].map(d)

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]

y = df['Go']

dtree = DecisionTreeClassifier()

dtree = dtree.fit(X, y)

print(dtree.predict([[40, 10, 7, 1]]))

print("[1] means 'GO'")

print("[0] means 'NO'")

Page | 71

Example

Different Results

You will see that the Decision Tree gives you different results if you run it
enough times, even if you feed it with the same data.

That is because the Decision Tree does not give us a 100% certain answer. It is
based on the probability of an outcome, and the answer will vary.

Ex1306.py

"""

What would the answer be if the comedy rank was 6?

"""

import pandas

from sklearn import tree

from sklearn.tree import DecisionTreeClassifier

df = pandas.read_csv("data3.csv")

d = {'UK': 0, 'USA': 1, 'N': 2}

df['Nationality'] = df['Nationality'].map(d)

d = {'YES': 1, 'NO': 0}

df['Go'] = df['Go'].map(d)

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]

y = df['Go']

dtree = DecisionTreeClassifier()

dtree = dtree.fit(X, y)

print(dtree.predict([[40, 10, 6, 1]]))

print("[1] means 'GO'")

print("[0] means 'NO'")

Page | 72

Confusion Matrix
It is a table that is used in classification problems to assess where errors in the
model were made.

The rows represent the actual classes the outcomes should have been. While the

columns represent the predictions we have made. Using this table it is easy to
see which predictions are wrong.

Creating a Confusion Matrix

Confusion matrixes can be created by predictions made from a logistic regression.

For now we will generate actual and predicted values by utilizing NumPy:

import numpy

Next we will need to generate the numbers for "actual" and "predicted" values.

actual = numpy.random.binomial(1, 0.9, size = 1000)

predicted = numpy.random.binomial(1, 0.9, size = 1000)

In order to create the confusion matrix we need to import metrics from the
sklearn module.

from sklearn import metrics

Once metrics is imported we can use the confusion matrix function on our actual

and predicted values.

confusion_matrix = metrics.confusion_matrix(actual, predicted)

To create a more interpretable visual display we need to convert the table into a
confusion matrix display.

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix =

confusion_matrix, display_labels = [False, True])

Vizualizing the display requires that we import pyplot from matplotlib.

import matplotlib.pyplot as plt

Page | 73

Finally to display the plot we can use the functions plot() and show() from pyplot.

cm_display.plot()

plt.show()

See the whole example in action:

Example

Result

Ex1401.py

import matplotlib.pyplot as plt

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

confusion_matrix = metrics.confusion_matrix(actual,

predicted)

cm_display =

metrics.ConfusionMatrixDisplay(confusion_matrix =

confusion_matrix, display_labels = [False, True])

cm_display.plot()

plt.show()

Page | 74

Results Explained

The Confusion Matrix created has four different quadrants:

True Negative (Top-Left Quadrant)

False Positive (Top-Right Quadrant)
False Negative (Bottom-Left Quadrant)

True Positive (Bottom-Right Quadrant)

True means that the values were accurately predicted, False means that there

was an error or wrong prediction.

Now that we have made a Confusion Matrix, we can calculate different measures

to quantify the quality of the model. First, lets look at Accuracy.

Created Metrics

The matrix provides us with many useful metrics that help us to evaluate out
classification model.

The different measures include: Accuracy, Precision, Sensitivity (Recall),

Specificity, and the F-score, explained below.

Accuracy

Accuracy measures how often the model is correct.

How to Calculate

(True Positive + True Negative) / Total Predictions

Example

Accuracy = metrics.accuracy_score(actual, predicted)

Page | 75

Result

0.823

Ex1402.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

Accuracy = metrics.accuracy_score(actual, predicted)

print(Accuracy)

Page | 76

Precision

Of the positives predicted, what percentage is truly positive?

How to Calculate

True Positive / (True Positive + False Positive)

Precision does not evaluate the correctly predicted negative cases:

Example

Result

0.8921348314606742

Ex1403.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

Precision = metrics.precision_score(actual, predicted)

print(Precision)

Page | 77

Sensitivity (Recall)

Of all the positive cases, what percentage are predicted positive?

Sensitivity (sometimes called Recall) measures how good the model is at

predicting positives.

This means it looks at true positives and false negatives (which are positives that

have been incorrectly predicted as negative).

How to Calculate

True Positive / (True Positive + False Negative)

Sensitivity is good at understanding how well the model predicts something is

positive:

Example

Result

0.8937568455640745

Ex1404.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

Sensitivity_recall = metrics.recall_score(actual,

predicted)

print(Sensitivity_recall)

Page | 78

Specificity

How well the model is at prediciting negative results?

Specificity is similar to sensitivity, but looks at it from the persepctive of negative

results.

How to Calculate

True Negative / (True Negative + False Positive)

Since it is just the opposite of Recall, we use the recall_score function, taking the

opposite position label:

Example

Result

0.07368421052631578

Ex1405.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

Specificity = metrics.recall_score(actual, predicted,

pos_label=0)

print(Specificity)

Page | 79

F-score

F-score is the "harmonic mean" of precision and sensitivity.

It considers both false positive and false negative cases and is good for

imbalanced datasets.

How to Calculate

2 * ((Precision * Sensitivity) / (Precision + Sensitivity))

This score does not take into consideration the True Negative values:

Example

Result

0.9097909790979098

All calulations in one:

print({"Accuracy":Accuracy,"Precision":Prec

ision,"Sensitivity_recall":Sensitivity_reca

ll,"Specificity":Specificity,"F1_score":F1_

score})

Ex1406.py

import numpy

from sklearn import metrics

actual = numpy.random.binomial(1,.9,size = 1000)

predicted = numpy.random.binomial(1,.9,size = 1000)

F1_score = metrics.f1_score(actual, predicted)

print(F1_score)

Page | 80

Hierarchical Clustering
Hierarchical clustering is an unsupervised learning method for clustering data
points. The algorithm builds clusters by measuring the dissimilarities between
data. Unsupervised learning means that a model does not have to be trained,

and we do not need a "target" variable. This method can be used on any data to
visualize and interpret the relationship between individual data points.

Here we will use hierarchical clustering to group data points and visualize the

clusters using both a dendrogram and scatter plot.

How does it work?

We will use Agglomerative Clustering, a type of hierarchical clustering that
follows a bottom up approach. We begin by treating each data point as its own
cluster. Then, we join clusters together that have the shortest distance between

them to create larger clusters. This step is repeated until one large cluster is
formed containing all of the data points.

Hierarchical clustering requires us to decide on both a distance and linkage
method. We will use euclidean distance and the Ward linkage method, which

attempts to minimize the variance between clusters.

Example

Ex1501.py

"""

Start by visualizing some data points

"""

import numpy as np

import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)

plt.show()

Page | 81

Result

Now we compute the ward linkage using euclidean distance, and visualize it

using a dendrogram:

Ex1502.py

import numpy as np

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

data = list(zip(x, y))

linkage_data = linkage(data, method='ward',

metric='euclidean')

dendrogram(linkage_data)

plt.show()

Page | 82

Result

Here, we do the same thing with Python's scikit-learn library. Then, visualize on
a 2-dimensional plot:

Example

Ex1503.py

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import AgglomerativeClustering

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

data = list(zip(x, y))

hierarchical_cluster =

AgglomerativeClustering(n_clusters=2,

affinity='euclidean', linkage='ward')

labels = hierarchical_cluster.fit_predict(data)

plt.scatter(x, y, c=labels)

plt.show()

Page | 83

Result

Example Explained

Import the modules you need.

import numpy as np

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage

from sklearn.cluster import AgglomerativeClustering

Create arrays that resemble two variables in a dataset. Note that while we only

use two variables here, this method will work with any number of variables:

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

Turn the data into a set of points:

data = list(zip(x, y))

print(data)

Page | 84

Result

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24),

(6, 22), (10, 21), (12, 21)]

Compute the linkage between all of the different points. Here we use a simple
euclidean distance measure and Ward's linkage, which seeks to minimize the

variance between clusters.

linkage_data = linkage(data, method='ward', metric='euclidean')

Finally, plot the results in a dendrogram. This plot will show us the hierarchy of
clusters from the bottom (individual points) to the top (a single cluster

consisting of all data points).

plt.show() lets us visualize the dendrogram instead of just the raw linkage data.

dendrogram(linkage_data)

plt.show()

Result

Page | 85

The scikit-learn library allows us to use hierarchichal clustering in a different
manner. First, we initialize the AgglomerativeClustering class with 2 clusters, using

the same euclidean distance and Ward linkage.

hierarchical_cluster = AgglomerativeClustering(n_clusters=2,

affinity='euclidean', linkage='ward')

The .fit_predict method can be called on our data to compute the clusters using

the defined parameters across our chosen number of clusters.

labels = hierarchical_cluster.fit_predict(data) print(labels)

Result:

[0 0 1 0 0 1 1 0 1 1]

Finally, if we plot the same data and color the points using the labels assigned
to each index by the hierarchical clustering method, we can see the cluster each

point was assigned to:

plt.scatter(x, y, c=labels)

plt.show()

Result

Page | 86

Logistic Regression
Logistic regression aims to solve classification problems. It does this by predicting
categorical outcomes, unlike linear regression that predicts a continuous outcome.

In the simplest case there are two outcomes, which is called binomial, an example

of which is predicting if a tumor is malignant or benign. Other cases have more
than two outcomes to classify, in this case it is called multinomial. A common
example for multinomial logistic regression would be predicting the class of an

iris flower between 3 different species.

Here we will be using basic logistic regression to predict a binomial variable. This

means it has only two possible outcomes.

How does it work?

In Python we have modules that will do the work for us. Start by importing the
NumPy module.

import numpy

Store the independent variables in X.

Store the dependent variable in y.

Below is a sample dataset:

#X represents the size of a tumor in centimeters.

X =

numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96,

4.52, 3.69, 5.88]).reshape(-1,1)

#Note: X has to be reshaped into a column from a row for the

LogisticRegression() function to work.

#y represents whether or not the tumor is cancerous (0 for "No", 1

for "Yes").

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])

We will use a method from the sklearn module, so we will have to import that
module as well:

from sklearn import linear_model

Page | 87

From the sklearn module we will use the LogisticRegression() method to create
a logistic regression object.

This object has a method called fit() that takes the independent and dependent

values as parameters and fills the regression object with data that describes the

relationship:

logr = linear_model.LogisticRegression()

logr.fit(X,y)

Now we have a logistic regression object that is ready to whether a tumor is

cancerous based on the tumor size:

#predict if tumor is cancerous where the size is 3.46mm:

predicted = logr.predict(numpy.array([3.46]).reshape(-1,1))

Example

Result
[0]

We have predicted that a tumor with a size of 3.46mm will not be cancerous.

Ex1601.py

"""

See the whole example in action

"""

import numpy

from sklearn import linear_model

#Reshaped for Logistic function.

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65,

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])

logr = linear_model.LogisticRegression()

logr.fit(X,y)

#predict if tumor is cancerous where the size is 3.46mm:

predicted = logr.predict(numpy.array([3.46]).reshape(-

1,1))

print(predicted)

Page | 88

Coefficient

In logistic regression the coefficient is the expected change in log-odds of
having the outcome per unit change in X.

This does not have the most intuitive understanding so let's use it to create
something that makes more sense, odds.

Example

Result
[[4.03541657]]

This tells us that as the size of a tumor increases by 1mm the odds of it being a tumor increases

by 4x.

Ex1602.py

"""

See the whole example in action

"""

import numpy

from sklearn import linear_model

#Reshaped for Logistic function.

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65,

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])

logr = linear_model.LogisticRegression()

logr.fit(X,y)

log_odds = logr.coef_

odds = numpy.exp(log_odds)

print(odds)

Page | 89

Probability

The coefficient and intercept values can be used to find the probability that each
tumor is cancerous.

Create a function that uses the model's coefficient and intercept values to
return a new value. This new value represents probability that the given

observation is a tumor:

def logit2prob(logr,x):

 log_odds = logr.coef_ * x + logr.intercept_

 odds = numpy.exp(log_odds)

 probability = odds / (1 + odds)

 return(probability)

Function Explained

To find the log-odds for each observation, we must first create a formula that
looks similar to the one from linear regression, extracting the coefficient and the
intercept.

log_odds = logr.coef_ * x + logr.intercept_

To then convert the log-odds to odds we must exponentiate the log-odds.

odds = numpy.exp(log_odds)

Now that we have the odds, we can convert it to probability by dividing it by 1

plus the odds.

probability = odds / (1 + odds)

Let us now use the function with what we have learned to find out the
probability that each tumor is cancerous.

Page | 90

Example

Result

 [[0.60749955]

 [0.19268876]

 [0.12775886]

 [0.00955221]

 [0.08038616]

 [0.07345637]

 [0.88362743]

 [0.77901378]

 [0.88924409]

 [0.81293497]

 [0.57719129]

 [0.96664243]]

Ex1603.py

"""

See the whole example in action

"""

import numpy

from sklearn import linear_model

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65,

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])

logr = linear_model.LogisticRegression()

logr.fit(X,y)

def logit2prob(logr, X):

 log_odds = logr.coef_ * X + logr.intercept_

 odds = numpy.exp(log_odds)

 probability = odds / (1 + odds)

 return(probability)

print(logit2prob(logr, X))

Page | 91

Results Explained

3.78 0.61 The probability that a tumor with the size 3.78cm is cancerous is
61%.

2.44 0.19 The probability that a tumor with the size 2.44cm is cancerous is
19%.

2.09 0.13 The probability that a tumor with the size 2.09cm is cancerous is
13%.

Page | 92

Grid Search
The majority of machine learning models contain parameters that can be adjusted
to vary how the model learns. For example, the logistic regression model,
from sklearn, has a parameter C that controls regularization,which affects the

complexity of the model.

How do we pick the best value for C? The best value is dependent on the data

used to train the model.

How does it work?

One method is to try out different values and then pick the value that gives the
best score. This technique is known as a grid search. If we had to select the
values for two or more parameters, we would evaluate all combinations of the

sets of values thus forming a grid of values.

Before we get into the example it is good to know what the parameter we are

changing does. Higher values of C tell the model, the training data resembles real

world information, place a greater weight on the training data. While lower values

of C do the opposite.

Using Default Parameters

First let's see what kind of results we can generate without a grid search using
only the base parameters.

To get started we must first load in the dataset we will be working with.

from sklearn import datasets

iris = datasets.load_iris()

Next in order to create the model we must have a set of independent variables X

and a dependant variable y.

X = iris['data']

y = iris['target']

Page | 93

Now we will load the logistic model for classifying the iris flowers.

from sklearn.linear_model import LogisticRegression

Creating the model, setting max_iter to a higher value to ensure that the model
finds a result.

Keep in mind the default value for C in a logistic regression model is 1, we will

compare this later.

In the example below, we look at the iris data set and try to train a model with
varying values for C in logistic regression.

logit = LogisticRegression(max_iter = 10000)

After we create the model, we must fit the model to the data.

print(logit.fit(X,y))

To evaluate the model we run the score method.

print(logit.score(X,y))

Example

With the default setting of C = 1, we achieved a score of 0.973.

Let's see if we can do any better by implementing a grid search with difference
values of 0.973.

Ex1701.py

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

iris = datasets.load_iris()

X = iris['data']

y = iris['target']

logit = LogisticRegression(max_iter = 10000)

print(logit.fit(X,y))

print(logit.score(X,y))

Page | 94

Implementing Grid Search

We will follow the same steps of before except this time we will set a range of
values for C.

Knowing which values to set for the searched parameters will take a combination
of domain knowledge and practice.

Since the default value for C is 1, we will set a range of values surrounding it.

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2]

Next we will create a for loop to change out the values of C and evaluate the

model with each change.

First we will create an empty list to store the score within.

scores = []

To change the values of C we must loop over the range of values and update the

parameter each time.

for choice in C:

 logit.set_params(C=choice)

 logit.fit(X, y)

 scores.append(logit.score(X, y))

With the scores stored in a list, we can evaluate what the best choice of C is.

print(scores)

Page | 95

Example

Results Explained

We can see that the lower values of C performed worse than the base

parameter of 1. However, as we increased the value of C to 1.75 the model

experienced increased accuracy.

It seems that increasing C beyond this amount does not help increase model

accuracy.

Note on Best Practices

We scored our logistic regression model by using the same data that was used
to train it. If the model corresponds too closely to that data, it may not be great

at predicting unseen data. This statistical error is known as over fitting.

Ex1702.py

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

iris = datasets.load_iris()

X = iris['data']

y = iris['target']

logit = LogisticRegression(max_iter = 10000)

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2]

scores = []

for choice in C:

 logit.set_params(C=choice)

 logit.fit(X, y)

 scores.append(logit.score(X, y))

print(scores)

Page | 96

To avoid being misled by the scores on the training data, we can put aside a
portion of our data and use it specifically for the purpose of testing the model.

Refer to the lecture on train/test splitting to avoid being misled and overfitting.

Categorical Data
When your data has categories represented by strings, it will be difficult to use
them to train machine learning models which often only accepts numeric data.

Instead of ignoring the categorical data and excluding the information from our

model, you can transform the data so it can be used in your models.

Take a look at the table below, it is the same data set that we used in the multiple

regression chapter.

Example

import pandas as pd

cars = pd.read_csv('data2.csv')

print(cars.to_string())

In the multiple regression chapter, we tried to predict the CO2 emitted based on
the volume of the engine and the weight of the car but we excluded information

about the car brand and model.

The information about the car brand or the car model might help us make a better

prediction of the CO2 emitted.

One Hot Encoding

We cannot make use of the Car or Model column in our data since they are not
numeric. A linear relationship between a categorical variable, Car or Model, and
a numeric variable, CO2, cannot be determined.

To fix this issue, we must have a numeric representation of the categorical
variable. One way to do this is to have a column representing each group in the

category.

Page | 97

For each column, the values will be 1 or 0 where 1 represents the inclusion of the
group and 0 represents the exclusion. This transformation is called one hot

encoding.

You do not have to do this manually, the Python Pandas module has a function

that called get_dummies() which does one hot encoding.

Example

Result

A column was created for every car brand in the Car column.

Predict CO2

We can use this additional information alongside the volume and weight to
predict CO2

To combine the information, we can use the concat() function from pandas.

Ex1801.py

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

iris = datasets.load_iris()

X = iris['data']

y = iris['target']

logit = LogisticRegression(max_iter = 10000)

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2]

scores = []

for choice in C:

 logit.set_params(C=choice)

 logit.fit(X, y)

 scores.append(logit.score(X, y))

print(scores)

Page | 98

First we will need to import a couple modules.

We will start with importing the Pandas.

import pandas

The pandas module allows us to read csv files and manipulate DataFrame

objects:

cars = pandas.read_csv("data.csv")

It also allows us to create the dummy variables:

ohe_cars = pandas.get_dummies(cars[['Car']])

Then we must select the independent variables (X) and add the dummy
variables columnwise.

Also store the dependent variable in y.

X = pandas.concat([cars[['Volume', 'Weight']], ohe_cars], axis=1)

y = cars['CO2']

We also need to import a method from sklearn to create a linear model

from sklearn import linear_model

Now we can fit the data to a linear regression:

regr = linear_model.LinearRegression()

regr.fit(X,y)

Finally we can predict the CO2 emissions based on the car's weight, volume,

and manufacturer.

##predict the CO2 emission of a Volvo where the weight is 2300kg,

and the volume is 1300cm3:

predictedCO2 =

regr.predict([[2300, 1300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]])

Page | 99

Example

Result

[122.45153299]

We now have a coefficient for the volume, the weight, and each car brand in the
data set

Ex1802.py

import pandas

from sklearn import linear_model

cars = pandas.read_csv("data.csv")

ohe_cars = pandas.get_dummies(cars[['Car']])

X = pandas.concat([cars[['Volume', 'Weight']], ohe_cars],

axis=1)

y = cars['CO2']

regr = linear_model.LinearRegression()

regr.fit(X,y)

##predict the CO2 emission of a Volvo where the weight is

2300kg, and the volume is 1300cm3:

predictedCO2 = regr.predict([[2300,

1300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]])

print(predictedCO2)

Page | 100

Dummifying

It is not necessary to create one column for each group in your category. The
information can be retained using 1 column less than the number of groups you

have.

For example, you have a column representing colors and in that column, you

have two colors, red and blue.

Example

Result

 color

0 blue

1 red

You can create 1 column called red where 1 represents red and 0 represents not

red, which means it is blue.

To do this, we can use the same function that we used for one hot encoding,
get_dummies, and then drop one of the columns. There is an argument,

drop_first, which allows us to exclude the first column from the resulting table.

Ex1803.py

import pandas as pd

colors = pd.DataFrame({'color': ['blue', 'red']})

print(colors)

Page | 101

Example

Result
 color_red

0 False

1 True

What if you have more than 2 groups? How can the multiple groups be

represented by 1 less column?

Let's say we have three colors this time, red, blue and green. When we

get_dummies while dropping the first column, we get the following table.

Example

Result
 color_green color_red color

0 False False blue

1 False True red

2 True False green

Ex1804.py

import pandas as pd

colors = pd.DataFrame({'color': ['blue', 'red']})

dummies = pd.get_dummies(colors, drop_first=True)

print(dummies)

Ex1805.py

import pandas as pd

colors = pd.DataFrame({'color': ['blue', 'red',

'green']})

dummies = pd.get_dummies(colors, drop_first=True)

dummies['color'] = colors['color']

print(dummies)

Page | 102

K-means
K-means is an unsupervised learning method for clustering data points. The
algorithm iteratively divides data points into K clusters by minimizing the
variance in each cluster.

Here, we will show you how to estimate the best value for K using the elbow
method, then use K-means clustering to group the data points into clusters.

How does it work?

First, each data point is randomly assigned to one of the K clusters. Then, we
compute the centroid (functionally the center) of each cluster, and reassign
each data point to the cluster with the closest centroid. We repeat this process

until the cluster assignments for each data point are no longer changing.

K-means clustering requires us to select K, the number of clusters we want to

group the data into. The elbow method lets us graph the inertia (a distance-
based metric) and visualize the point at which it starts decreasing linearly. This

point is referred to as the "eblow" and is a good estimate for the best value for
K based on our data.

Example

Ex1901.py

"""

Start by visualizing some data points

"""

import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)

plt.show()

Page | 103

Result

Now we utilize the elbow method to visualize the intertia for different values of
K:

Page | 104

Example

Result

Ex1902.py

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

data = list(zip(x, y))

inertias = []

for i in range(1,11):

 kmeans = KMeans(n_clusters=i)

 kmeans.fit(data)

 inertias.append(kmeans.inertia_)

plt.plot(range(1,11), inertias, marker='o')

plt.title('Elbow method')

plt.xlabel('Number of clusters')

plt.ylabel('Inertia')

plt.show()

Page | 105

The elbow method shows that 2 is a good value for K, so we retrain and
visualize the result:

Example

Result

Ex1903.py

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

data = list(zip(x, y))

kmeans = KMeans(n_clusters=2)

kmeans.fit(data)

plt.scatter(x, y, c=kmeans.labels_)

plt.show()

Page | 106

Example Explained

Import the modules you need.

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

scikit-learn is a popular library for machine learning.

Create arrays that resemble two variables in a dataset. Note that while we only

use two variables here, this method will work with any number of variables:

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

Turn the data into a set of points:

data = list(zip(x, y))

print(data)

Result:

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24),

(6, 22), (10, 21), (12, 21)]

In order to find the best value for K, we need to run K-means across our data

for a range of possible values. We only have 10 data points, so the maximum
number of clusters is 10. So for each value K in range(1,11), we train a K-
means model and plot the intertia at that number of clusters:

inertias = []

for i in range(1,11):
 kmeans = KMeans(n_clusters=i)

 kmeans.fit(data)

 inertias.append(kmeans.inertia_)

plt.plot(range(1,11), inertias, marker='o')
plt.title('Elbow method')

plt.xlabel('Number of clusters')

plt.ylabel('Inertia')

plt.show()

Result:

Page | 107

We can see that the "elbow" on the graph above (where the interia becomes
more linear) is at K=2. We can then fit our K-means algorithm one more time

and plot the different clusters assigned to the data:

kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

plt.scatter(x, y, c=kmeans.labels_)

plt.show()

Result:

Page | 108

Page | 109

Bootstrap Aggregation

(Bagging)

Bagging

Methods such as Decision Trees, can be prone to overfitting on the training set
which can lead to wrong predictions on new data.

Bootstrap Aggregation (bagging) is a ensembling method that attempts to
resolve overfitting for classification or regression problems. Bagging aims to

improve the accuracy and performance of machine learning algorithms. It does
this by taking random subsets of an original dataset, with replacement, and fits

either a classifier (for classification) or regressor (for regression) to each
subset. The predictions for each subset are then aggregated through majority

vote for classification or averaging for regression, increasing prediction
accuracy.

Evaluating a Base Classifier

To see how bagging can improve model performance, we must start by
evaluating how the base classifier performs on the dataset. If you do not know
what decision trees are review the lesson on decision trees before moving

forward, as bagging is an continuation of the concept.

We will be looking to identify different classes of wines found in Sklearn's wine

dataset.

Let's start by importing the necessary modules.

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

Next we need to load in the data and store it into X (input features) and y

(target). The parameter as_frame is set equal to True so we do not lose the
feature names when loading the data. (sklearn version older than 0.23 must

skip the as_frame argument as it is not supported)

Page | 110

data = datasets.load_wine(as_frame = True)

X = data.data

y = data.target

In order to properly evaluate our model on unseen data, we need to split X and

y into train and test sets. For information on splitting data, see the Train/Test
lesson.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

= 0.25, random_state = 22)

With our data prepared, we can now instantiate a base classifier and fit it to the
training data.

dtree = DecisionTreeClassifier(random_state = 22)

dtree.fit(X_train,y_train)

Result:

DecisionTreeClassifier(random_state=22)

We can now predict the class of wine the unseen test set and evaluate the
model performance.

y_pred = dtree.predict(X_test)

print("Train data accuracy:",accuracy_score(y_true = y_train,

y_pred = dtree.predict(X_train)))

print("Test data accuracy:",accuracy_score(y_true = y_test, y_pred

= y_pred))

Result:

Train data accuracy: 1.0

Test data accuracy: 0.8222222222222222

Page | 111

Example

The base classifier performs reasonably well on the dataset achieving 82%

accuracy on the test dataset with the current parameters (Different results may
occur if you do not have the random_state parameter set).

Now that we have a baseline accuracy for the test dataset, we can see how the

Bagging Classifier out performs a single Decision Tree Classifier.

Ex2001.py

"""

Import the necessary data and evaluate base classifier

performance

"""

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

data = datasets.load_wine(as_frame = True)

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 22)

dtree = DecisionTreeClassifier(random_state = 22)

dtree.fit(X_train,y_train)

y_pred = dtree.predict(X_test)

print("Train data accuracy:",accuracy_score(y_true =

y_train, y_pred = dtree.predict(X_train)))

print("Test data accuracy:",accuracy_score(y_true =

y_test, y_pred = y_pred))

Page | 112

Creating a Bagging Classifier

For bagging we need to set the parameter n_estimators, this is the number of
base classifiers that our model is going to aggregate together.

For this sample dataset the number of estimators is relatively low, it is often the
case that much larger ranges are explored. Hyperparameter tuning is usually

done with a grid search, but for now we will use a select set of values for the
number of estimators.

We start by importing the necessary model.

from sklearn.ensemble import BaggingClassifier

Now lets create a range of values that represent the number of estimators we
want to use in each ensemble.

estimator_range = [2,4,6,8,10,12,14,16]

To see how the Bagging Classifier performs with differing values of n_estimators

we need a way to iterate over the range of values and store the results from
each ensemble. To do this we will create a for loop, storing the models and
scores in separate lists for later vizualizations.

Note: The default parameter for the base classifier in BaggingClassifier is

the DicisionTreeClassifier therefore we do not need to set it when instantiating

the bagging model.

models = []

scores = []

for n_estimators in estimator_range:

 # Create bagging classifier

 clf = BaggingClassifier(n_estimators = n_estimators,

random_state = 22)

 # Fit the model

 clf.fit(X_train, y_train)

 # Append the model and score to their respective list

 models.append(clf)

 scores.append(accuracy_score(y_true = y_test, y_pred =

clf.predict(X_test)))

https://www.w3schools.com/python/python_ml_grid_search.asp

Page | 113

With the models and scores stored, we can now visualize the improvement in
model performance.

import matplotlib.pyplot as plt

Generate the plot of scores against number of estimators

plt.figure(figsize=(9,6))
plt.plot(estimator_range, scores)

Adjust labels and font (to make visable)

plt.xlabel("n_estimators", fontsize = 18)

plt.ylabel("score", fontsize = 18)

plt.tick_params(labelsize = 16)

Visualize plot

plt.show()

Page | 114

Example

Ex2002.py

"""

Import the necessary data and evaluate base classifier

performance

"""

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier

data = datasets.load_wine(as_frame = True)

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 22)

dtree = DecisionTreeClassifier(random_state = 22)

dtree.fit(X_train,y_train)

y_pred = dtree.predict(X_test)

print("Train data accuracy:",accuracy_score(y_true =

y_train, y_pred = dtree.predict(X_train)))

print("Test data accuracy:",accuracy_score(y_true =

y_test, y_pred = y_pred))

Page | 115

Result

Results Explained

By iterating through different values for the number of estimators we can see
an increase in model performance from 82.2% to 95.5%. After 14 estimators
the accuracy begins to drop, again if you set a different random_state the

values you see will vary. That is why it is best practice to use cross validation to
ensure stable results.

In this case, we see a 13.3% increase in accuracy when it comes to identifying
the type of the wine.

https://www.w3schools.com/python/python_ml_cross_validation.asp

Page | 116

Another Form of Evaluation

As bootstrapping chooses random subsets of observations to create classifiers,
there are observations that are left out in the selection process. These "out-of-

bag" observations can then be used to evaluate the model, similarly to that of a
test set. Keep in mind, that out-of-bag estimation can overestimate error in

binary classification problems and should only be used as a compliment to other
metrics.

We saw in the last exercise that 12 estimators yielded the highest accuracy, so
we will use that to create our model. This time setting the

parameter oob_score to true to evaluate the model with out-of-bag score.

Example

Since the samples used in OOB and the test set are different, and the dataset is

relatively small, there is a difference in the accuracy. It is rare that they would

Ex2003.py

"""

Create a model with out-of-bag metric

"""

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.ensemble import BaggingClassifier

data = datasets.load_wine(as_frame = True)

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 22)

oob_model = BaggingClassifier(n_estimators = 12,

oob_score = True,random_state = 22)

oob_model.fit(X_train, y_train)

print(oob_model.oob_score_)

Page | 117

be exactly the same, again OOB should be used quick means for estimating
error, but is not the only evaluation metric.

Generating Decision Trees from Bagging

Classifier

As was seen in the Decision Tree lesson, it is possible to graph the decision tree
the model created. It is also possible to see the individual decision trees that

went into the aggregated classifier. This helps us to gain a more intuitive
understanding on how the bagging model arrives at its predictions.

Note: This is only functional with smaller datasets, where the trees are
relatively shallow and narrow making them easy to visualize.

We will need to import plot_tree function from sklearn.tree. The different trees

can be graphed by changing the estimator you wish to visualize.

https://www.w3schools.com/python/python_ml_decision_tree.asp

Page | 118

Example

Ex2004.py

"""

Generate Decision Trees from Bagging Classifier

"""

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import plot_tree

data = datasets.load_wine()

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 22)

oob_model = BaggingClassifier(n_estimators = 12,

oob_score = True,random_state = 22)

oob_model.fit(X_train, y_train)

clf = BaggingClassifier(n_estimators = 12, oob_score =

True,random_state = 22)

clf.fit(X_train, y_train)

plt.figure(figsize=(30, 20))

plot_tree(clf.estimators_[0])

Page | 119

Example

Result

Here we can see just the first decision tree that was used to vote on the final

prediction. Again, by changing the index of the classifier you can see each of
the trees that have been aggregated.

Ex2003.py

"""

Create a model with out-of-bag metric

"""

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.ensemble import BaggingClassifier

data = datasets.load_wine(as_frame = True)

X = data.data

y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.25, random_state = 22)

oob_model = BaggingClassifier(n_estimators = 12,

oob_score = True,random_state = 22)

oob_model.fit(X_train, y_train)

print(oob_model.oob_score_)

Page | 120

Cross Validation
When adjusting models we are aiming to increase overall model performance on
unseen data. Hyperparameter tuning can lead to much better performance on
test sets. However, optimizing parameters to the test set can lead information

leakage causing the model to preform worse on unseen data. To correct for this
we can perform cross validation.

To better understand CV, we will be performing different methods on the iris

dataset. Let us first load in and separate the data.

from sklearn import datasets

X, y = datasets.load_iris(return_X_y=True)

There are many methods to cross validation, we will start by looking at k-fold

cross validation.

K-Fold

The training data used in the model is split, into k number of smaller sets, to be
used to validate the model. The model is then trained on k-1 folds of training
set. The remaining fold is then used as a validation set to evaluate the model.

As we will be trying to classify different species of iris flowers we will need to

import a classifier model, for this exercise we will be using
a DecisionTreeClassifier. We will also need to import CV modules from sklearn.

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import KFold, cross_val_score

With the data loaded we can now create and fit a model for evaluation.

clf = DecisionTreeClassifier(random_state=42)

Now let's evaluate our model and see how it performs on each k-fold.

k_folds = KFold(n_splits = 5)

scores = cross_val_score(clf, X, y, cv = k_folds)

Page | 121

It is also good pratice to see how CV performed overall by averaging the scores
for all folds.

Example

Stratified K-Fold

In cases where classes are imbalanced we need a way to account for the
imbalance in both the train and validation sets. To do so we can stratify the

target classes, meaning that both sets will have an equal proportion of all
classes.

Ex2101.py

"""

Run k-fold CV

"""

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import KFold,

cross_val_score

X, y = datasets.load_iris(return_X_y=True)

clf = DecisionTreeClassifier(random_state=42)

k_folds = KFold(n_splits = 5)

scores = cross_val_score(clf, X, y, cv = k_folds)

print("Cross Validation Scores: ", scores)

print("Average CV Score: ", scores.mean())

print("Number of CV Scores used in Average: ",

len(scores))

Page | 122

Example

While the number of folds is the same, the average CV increases from the basic
k-fold when making sure there is stratified classes.

Leave-One-Out (LOO)

Instead of selecting the number of splits in the training data set like k-fold
LeaveOneOut, utilize 1 observation to validate and n-1 observations to train.
This method is an exaustive technique.

Ex2102.py

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import StratifiedKFold,

cross_val_score

X, y = datasets.load_iris(return_X_y=True)

clf = DecisionTreeClassifier(random_state=42)

sk_folds = StratifiedKFold(n_splits = 5)

scores = cross_val_score(clf, X, y, cv = sk_folds)

print("Cross Validation Scores: ", scores)

print("Average CV Score: ", scores.mean())

print("Number of CV Scores used in Average: ",

len(scores))

Page | 123

Example

We can observe that the number of cross validation scores performed is equal
to the number of observations in the dataset. In this case there are 150

observations in the iris dataset.

The average CV score is 94%.

Leave-P-Out (LPO)

Leave-P-Out is simply a nuanced diffence to the Leave-One-Out idea, in that we
can select the number of p to use in our validation set.

Ex2103.py

"""

Run LOO CV

"""

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import LeaveOneOut,

cross_val_score

X, y = datasets.load_iris(return_X_y=True)

clf = DecisionTreeClassifier(random_state=42)

loo = LeaveOneOut()

scores = cross_val_score(clf, X, y, cv = loo)

print("Cross Validation Scores: ", scores)

print("Average CV Score: ", scores.mean())

print("Number of CV Scores used in Average: ",

len(scores))

Page | 124

Example

As we can see this is an exhaustive method we many more scores being

calculated than Leave-One-Out, even with a p = 2, yet it achieves roughly the
same average CV score.

Shuffle Split

Unlike KFold, ShuffleSplit leaves out a percentage of the data, not to be used

in the train or validation sets. To do so we must decide what the train and test

sizes are, as well as the number of splits.

Ex2104.py

"""

Run LPO CV

"""

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import LeavePOut,

cross_val_score

X, y = datasets.load_iris(return_X_y=True)

clf = DecisionTreeClassifier(random_state=42)

lpo = LeavePOut(p=2)

scores = cross_val_score(clf, X, y, cv = lpo)

print("Cross Validation Scores: ", scores)

print("Average CV Score: ", scores.mean())

print("Number of CV Scores used in Average: ",

len(scores))

Page | 125

Example

Ending Notes

These are just a few of the CV methods that can be applied to models. There
are many more cross validation classes, with most models having their own

class. Check out sklearns cross validation for more CV options.

Ex2105.py

"""

Run Shuffle Split CV

"""

from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import ShuffleSplit,

cross_val_score

X, y = datasets.load_iris(return_X_y=True)

clf = DecisionTreeClassifier(random_state=42)

ss = ShuffleSplit(train_size=0.6, test_size=0.3, n_splits

= 5)

scores = cross_val_score(clf, X, y, cv = ss)

print("Cross Validation Scores: ", scores)

print("Average CV Score: ", scores.mean())

print("Number of CV Scores used in Average: ",

len(scores))

Page | 126

AUC - ROC Curve
In classification, there are many different evaluation metrics. The most popular
is accuracy, which measures how often the model is correct. This is a great
metric because it is easy to understand and getting the most correct guesses is

often desired. There are some cases where you might consider using another
evaluation metric.

Another common metric is AUC, area under the receiver operating

characteristic (ROC) curve. The Reciever operating characteristic curve plots
the true positive (TP) rate versus the false positive (FP) rate at different

classification thresholds. The thresholds are different probability cutoffs that
separate the two classes in binary classification. It uses probability to tell us

how well a model separates the classes.

Imbalanced Data

Suppose we have an imbalanced data set where the majority of our data is of
one value. We can obtain high accuracy for the model by predicting the majority
class.

Page | 127

Example

Although we obtain a very high accuracy, the model provided no information
about the data so it's not useful. We accurately predict class 1 100% of the time
while inaccurately predict class 0 0% of the time. At the expense of accuracy, it

might be better to have a model that can somewhat separate the two classes.

Ex2201.py

import numpy as np

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

ratio = .95

n_0 = int((1-ratio) * n)

n_1 = int(ratio * n)

y = np.array([0] * n_0 + [1] * n_1)

below are the probabilities obtained from a

hypothetical model that always predicts the majority

class

probability of predicting class 1 is going to be 100%

y_proba = np.array([1]*n)

y_pred = y_proba > .5

print(f'accuracy score: {accuracy_score(y, y_pred)}')

cf_mat = confusion_matrix(y, y_pred)

print('Confusion matrix')

print(cf_mat)

print(f'class 0 accuracy: {cf_mat[0][0]/n_0}')

print(f'class 1 accuracy: {cf_mat[1][1]/n_1}')

Page | 128

Example

For the second set of predictions, we do not have as high of an accuracy score
as the first but the accuracy for each class is more balanced. Using accuracy as

an evaluation metric we would rate the first model higher than the second even
though it doesn't tell us anything about the data.

In cases like this, using another evaluation metric like AUC would be preferred.

import matplotlib.pyplot as plt

def plot_roc_curve(true_y, y_prob):

 """

 plots the roc curve based of the probabilities

 """

Ex2202.py

import numpy as np

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

ratio = .95

n_0 = int((1-ratio) * n)

n_1 = int(ratio * n)

y = np.array([0] * n_0 + [1] * n_1)

below are the probabilities obtained from a

hypothetical model that doesn't always predict the mode

y_proba_2 = np.array(

 np.random.uniform(0, .7, n_0).tolist() +

 np.random.uniform(.3, 1, n_1).tolist()

)

y_pred_2 = y_proba_2 > .5

print(f'accuracy score: {accuracy_score(y, y_pred_2)}')

cf_mat = confusion_matrix(y, y_pred_2)

print('Confusion matrix')

print(cf_mat)

print(f'class 0 accuracy: {cf_mat[0][0]/n_0}')

print(f'class 1 accuracy: {cf_mat[1][1]/n_1}')

Page | 129

 fpr, tpr, thresholds = roc_curve(true_y, y_prob)

 plt.plot(fpr, tpr)

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

Page | 130

Example

Ex2203.py

"""

Model 1

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

ratio = .95

n_0 = int((1 - ratio) * n)

n_1 = int(ratio * n)

y = np.array([0] * n_0 + [1] * n_1)

below are the probabilities obtained from a

hypothetical model that always predicts the majority

class

probability of predicting class 1 is going to be 100%

y_proba = np.array([1] * n)

y_pred = y_proba > .5

def plot_roc_curve(true_y, y_prob):

 """

 plots the roc curve based of the probabilities

 """

 fpr, tpr, thresholds = roc_curve(true_y, y_prob)

 plt.plot(fpr, tpr)

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

plot_roc_curve(y, y_proba)

print(f'model 1 AUC score: {roc_auc_score(y, y_proba)}')

Page | 131

Result

model 1 AUC score: 0.5

Page | 132

Example

Page | 133

Ex2204.py

"""

Model 2

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

ratio = .95

n_0 = int((1 - ratio) * n)

n_1 = int(ratio * n)

y = np.array([0] * n_0 + [1] * n_1)

below are the probabilities obtained from a

hypothetical model that doesn't always predict the mode

y_proba_2 = np.array(

 np.random.uniform(0, .7, n_0).tolist() +

 np.random.uniform(.3, 1, n_1).tolist()

)

y_pred_2 = y_proba_2 > .5

def plot_roc_curve(true_y, y_prob):

 """

 plots the roc curve based of the probabilities

 """

 fpr, tpr, thresholds = roc_curve(true_y, y_prob)

 plt.plot(fpr, tpr)

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

plot_roc_curve(y, y_proba_2)

print(f'model 2 AUC score: {roc_auc_score(y,

y_proba_2)}')

Page | 134

Result

model 2 AUC score: 0.8270551578947367

An AUC score of around .5 would mean that the model is unable to make a

distinction between the two classes and the curve would look like a line with a
slope of 1. An AUC score closer to 1 means that the model has the ability to

separate the two classes and the curve would come closer to the top left corner
of the graph.

Page | 135

Probabilities

Because AUC is a metric that utilizes probabilities of the class predictions, we
can be more confident in a model that has a higher AUC score than one with a

lower score even if they have similar accuracies.

In the data below, we have two sets of probabilites from hypothetical models.

The first has probabilities that are not as "confident" when predicting the two
classes (the probabilities are close to .5). The second has probabilities that are

more "confident" when predicting the two classes (the probabilities are close to
the extremes of 0 or 1).

Example

Ex2205.py

import numpy as np

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

y = np.array([0] * n + [1] * n)

y_prob_1 = np.array(

 np.random.uniform(.25, .5, n//2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.5, .75, n//2).tolist()

)

y_prob_2 = np.array(

 np.random.uniform(0, .4, n//2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.6, 1, n//2).tolist()

)

print(f'model 1 accuracy score: {accuracy_score(y,

y_prob_1>.5)}')

print(f'model 2 accuracy score: {accuracy_score(y,

y_prob_2>.5)}')

print(f'model 1 AUC score: {roc_auc_score(y, y_prob_1)}')

print(f'model 2 AUC score: {roc_auc_score(y, y_prob_2)}')

Page | 136

Example

Page | 137

Ex2206.py

"""

Plot model 1

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

y = np.array([0] * n + [1] * n)

y_prob_1 = np.array(

 np.random.uniform(.25, .5, n // 2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.5, .75, n // 2).tolist()

)

y_prob_2 = np.array(

 np.random.uniform(0, .4, n // 2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.6, 1, n // 2).tolist()

)

def plot_roc_curve(true_y, y_prob):

 """

 plots the roc curve based of the

probabilities

 """

 fpr, tpr, thresholds = roc_curve(true_y,

y_prob)

 plt.plot(fpr, tpr)

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

plot_roc_curve(y, y_prob_1)

Page | 138

Result

Page | 139

Example

Even though the accuracies for the two models are similar, the model with the

higher AUC score will be more reliable because it takes into account the
predicted probability. It is more likely to give you higher accuracy when

predicting future data.

Ex2207.py

"""

Plot model 2

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score,

confusion_matrix, roc_auc_score, roc_curve

n = 10000

y = np.array([0] * n + [1] * n)

y_prob_1 = np.array(

 np.random.uniform(.25, .5, n // 2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.5, .75, n // 2).tolist()

)

y_prob_2 = np.array(

 np.random.uniform(0, .4, n // 2).tolist() +

 np.random.uniform(.3, .7, n).tolist() +

 np.random.uniform(.6, 1, n // 2).tolist()

)

def plot_roc_curve(true_y, y_prob):

 """

 plots the roc curve based of the probabilities

 """

 fpr, tpr, thresholds = roc_curve(true_y, y_prob)

 plt.plot(fpr, tpr)

 plt.xlabel('False Positive Rate')

 plt.ylabel('True Positive Rate')

fpr, tpr, thresholds = roc_curve(y, y_prob_2)

plt.plot(fpr, tpr)

Page | 140

K-nearest neighbors (KNN)
KNN is a simple, supervised machine learning (ML) algorithm that can be used
for classification or regression tasks - and is also frequently used in missing
value imputation. It is based on the idea that the observations closest to a

given data point are the most "similar" observations in a data set, and we can
therefore classify unforeseen points based on the values of the closest existing
points. By choosing K, the user can select the number of nearby observations to

use in the algorithm.

Here, we will show you how to implement the KNN algorithm for classification,

and show how different values of K affect the results.

How does it work?

K is the number of nearest neighbors to use. For classification, a majority vote
is used to determined which class a new observation should fall into. Larger
values of K are often more robust to outliers and produce more stable decision

boundaries than very small values (K=3 would be better than K=1, which might
produce undesirable results.

Example

Ex2301.py

"""

Start by visualizing some data points

"""

import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]

plt.scatter(x, y, c=classes)

plt.show()

Page | 141

Result

Now we fit the KNN algorithm with K=1:

from sklearn.neighbors import KNeighborsClassifier

data = list(zip(x, y))

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(data, classes)

And use it to classify a new data point:

Page | 142

Example

Now we do the same thing, but with a higher K value which changes the

prediction:

Ex2302.py

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]

data = list(zip(x, y))

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(data, classes)

new_x = 8

new_y = 21

new_point = [(new_x, new_y)]

prediction = knn.predict(new_point)

plt.scatter(x + [new_x], y + [new_y], c=classes +

[prediction[0]])

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class:

{prediction[0]}")

plt.show()

Page | 143

Example

Ex2303.py

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]

data = list(zip(x, y))

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(data, classes)

new_x = 8

new_y = 21

new_point = [(new_x, new_y)]

prediction = knn.predict(new_point)

plt.scatter(x + [new_x], y + [new_y], c=classes +

[prediction[0]])

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class:

{prediction[0]}")

plt.show()

Page | 144

Result

Example Explained

Import the modules you need.

scikit-learn is a popular library for machine learning in Python.

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

Create arrays that resemble variables in a dataset. We have two input features
(x and y) and then a target class (class). The input features that are pre-labeled

with our target class will be used to predict the class of new data. Note that

while we only use two input features here, this method will work with any
number of variables:

Page | 145

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]

Turn the input features into a set of points:

data = list(zip(x, y))

print(data)

Result:

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24),

(8, 22), (10, 21), (12, 21)]

Using the input features and target class, we fit a KNN model on the model

using 1 nearest neighbor:

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(data, classes)

Then, we can use the same KNN object to predict the class of new, unforeseen

data points. First we create new x and y features, and then call knn.predict() on

the new data point to get a class of 0 or 1:

new_x = 8

new_y = 21
new_point = [(new_x, new_y)]

prediction = knn.predict(new_point)

print(prediction)

Result:

[0]

When we plot all the data along with the new point and class, we can see it's

been labeled blue with the 1 class. The text annotation is just to highlight the

location of the new point:

plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class:
{prediction[0]}")

plt.show()

Page | 146

Result:

However, when we changes the number of neighbors to 5, the number of points
used to classify our new point changes. As a result, so does the classification of

the new point:

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(data, classes)

prediction = knn.predict(new_point)

print(prediction)

Result:

[1]

When we plot the class of the new point along with the older points, we note
that the color has changed based on the associated class label:

Page | 147

plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class:

{prediction[0]}")

plt.show()

Result:

Page | 148

Page | 149

