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Machine Learning 
Machine Learning is making the computer learn from studying data and statistics. 

Machine Learning is a step into the direction of artificial intelligence (AI). 

Machine Learning is a program that analyses data and learns to predict the 

outcome. 

Where To Start? 

In this tutorial we will go back to mathematics and study statistics, and how to 
calculate important numbers based on data sets. 

We will also learn how to use various Python modules to get the answers we need. 

And we will learn how to make functions that are able to predict the outcome 
based on what we have learned. 

 

Data Set 

In the mind of a computer, a data set is any collection of data. It can be anything 
from an array to a complete database. 

Example of an array: 

[99,86,87,88,111,86,103,87,94,78,77,85,86] 

Example of a database: 

Carname Color Age Speed AutoPass 

BMW red 5 99 Y 

Volvo black 7 86 Y 

VW gray 8 87 N 

VW white 7 88 Y 
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Ford white 2 111 Y 

VW white 17 86 Y 

Tesla red 2 103 Y 

BMW black 9 87 Y 

Volvo gray 4 94 N 

Ford white 11 78 N 

Toyota gray 12 77 N 

VW white 9 85 N 

Toyota blue 6 86 Y 

By looking at the array, we can guess that the average value is probably around 
80 or 90, and we are also able to determine the highest value and the lowest 

value, but what else can we do? 

And by looking at the database we can see that the most popular color is white, 

and the oldest car is 17 years, but what if we could predict if a car had an AutoPass, 
just by looking at the other values? 

That is what Machine Learning is for! Analyzing data and predicting the outcome! 

In Machine Learning it is common to work with very large data sets. In this tutorial 

we will try to make it as easy as possible to understand the different concepts of 
machine learning, and we will work with small easy-to-understand data sets. 
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Data Types 

To analyze data, it is important to know what type of data we are dealing with. 

We can split the data types into three main categories: 

• Numerical 
• Categorical 

• Ordinal 

Numerical data are numbers, and can be split into two numerical categories: 

• Discrete Data 

- numbers that are limited to integers. Example: The number of cars 
passing by. 

• Continuous Data 
- numbers that are of infinite value. Example: The price of an item, or the 

size of an item 

Categorical data are values that cannot be measured up against each other. 
Example: a color value, or any yes/no values. 

Ordinal data are like categorical data, but can be measured up against each 
other. Example: school grades where A is better than B and so on. 

By knowing the data type of your data source, you will be able to know what 
technique to use when analyzing them. 

You will learn more about statistics and analyzing data in the next chapters 
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Mean, Median, and Mode 
What can we learn from looking at a group of numbers? 

In Machine Learning (and in mathematics) there are often three values that 
interests us: 

• Mean - The average value 
• Median - The mid point value 
• Mode - The most common value 

Example: We have registered the speed of 13 cars: 

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

What is the average, the middle, or the most common speed value? 

Mean 

The mean value is the average value. 

To calculate the mean, find the sum of all values, and divide the sum by the 
number of values: 

(99+86+87+88+111+86+103+87+94+78+77+85+86) / 13 = 89.77 

The NumPy module has a method for this.  

Example 

Ex0201.py 

""" 

Use the NumPy mean() method to find the average speed 

""" 

import numpy 

 

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

x = numpy.mean(speed) 

print(x) 
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Median 
The median value is the value in the middle, after you have sorted all the values: 

77, 78, 85, 86, 86, 86, 87, 87, 88, 94, 99, 103, 111 

It is important that the numbers are sorted before you can find the median. 

The NumPy module has a method for this: 

Example 

Mode 

The Mode value is the value that appears the most number of times: 

99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86 = 86 

The SciPy module has a method for this. 

  

Ex0202.py 

""" 

Use the NumPy median() method to find the middle value 

""" 

import numpy 

 

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

x = numpy.median(speed) 

print(x) 
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Example 

 

Chapter Summary 

The Mean, Median, and Mode are techniques that are often used in Machine 
Learning, so it is important to understand the concept behind them. 

  

Ex0203.py 

""" 

Use the SciPy mode() method to find the number that 

appears the most 

""" 

from scipy import stats 

 

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

x = stats.mode(speed) 

print(x) 
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Standard Deviation 
Standard deviation is a number that describes how spread out the values are. 

A low standard deviation means that most of the numbers are close to the mean 
(average) value. 

A high standard deviation means that the values are spread out over a wider 
range. 

Example: This time we have registered the speed of 7 cars: 

speed = [86,87,88,86,87,85,86] 

The standard deviation is: 

0.9 

Meaning that most of the values are within the range of 0.9 from the mean value, 
which is 86.4. 

Let us do the same with a selection of numbers with a wider range: 

speed = [32,111,138,28,59,77,97] 

The standard deviation is: 

37.85 

Meaning that most of the values are within the range of 37.85 from the mean 
value, which is 77.4. 

As you can see, a higher standard deviation indicates that the values are spread 

out over a wider range. 

The NumPy module has a method to calculate the standard deviation: 
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Example 

 

 

 

 

 

 

Variance 

Variance is another number that indicates how spread out the values are. 

In fact, if you take the square root of the variance, you get the standard deviation! 

Or the other way around, if you multiply the standard deviation by itself, you get 
the variance! 

To calculate the variance, you have to do as follows: 

1. Find the mean: 

(32+111+138+28+59+77+97) / 7 = 77.4 

2. For each value: find the difference from the mean: 

 32 - 77.4 = -45.4 

111 - 77.4 =  33.6 

138 - 77.4 =  60.6 

 28 - 77.4 = -49.4 

 59 - 77.4 = -18.4 

 77 - 77.4 = - 0.4 

 97 - 77.4 =  19.6 

Ex0301.py 

""" 

Use the NumPy std() method to find the standard 

deviation 

""" 

import numpy 

 

speed = [86,87,88,86,87,85,86] 

x = numpy.std(speed) 

print(x) 
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3. For each difference: find the square value: 

(-45.4)2 = 2061.16 
 (33.6)2 = 1128.96 
 (60.6)2 = 3672.36 
(-49.4)2 = 2440.36 
(-18.4)2 =  338.56 
(- 0.4)2 =    0.16 
 (19.6)2 =  384.16 

4. The variance is the average number of these squared differences: 

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1432.2 

Luckily, NumPy has a method to calculate the variance: 

Example 

 

 

Standard Deviation 

As we have learned, the formula to find the standard deviation is the square root 
of the variance: 

√1432.25 = 37.85 

Or, as in the example from before, use the NumPy to calculate the standard 

deviation: 

  

Ex0302.py 

""" 

Use the NumPy var() method to find the variance 

""" 

import numpy 

 

speed = [32,111,138,28,59,77,97] 

x = numpy.var(speed) 

print(x) 
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Example 

 

 

 

Symbols 

Standard Deviation is often represented by the symbol Sigma: σ 

Variance is often represented by the symbol Sigma Squared: σ2 

 

Chapter Summary 

The Standard Deviation and Variance are terms that are often used in Machine 
Learning, so it is important to understand how to get them, and the concept 
behind them. 

  

Ex0303.py 

""" 

Use the NumPy std() method to find the standard 

deviation 

""" 

import numpy 

 

speed = [32,111,138,28,59,77,97] 

x = numpy.std(speed) 

print(x) 
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Percentiles 
Percentiles are used in statistics to give you a number that describes the value 
that a given percent of the values are lower than. 

Example: Let's say we have an array of the ages of all the people that live in a 

street. 

ages = [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31] 

What is the 75. percentile? The answer is 43, meaning that 75% of the people 
are 43 or younger. 

The NumPy module has a method for finding the specified percentile: 

Example 

 

Example 

Ex0401.py 

""" 

Use the NumPy percentile() method to find the 

percentiles 

""" 

import numpy 

 

ages = 

[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,6

1,31] 

x = numpy.percentile(ages, 75) 

print(x) 

Ex0402.py 

""" 

What is the age that 90% of the people are younger 

than? 

""" 

import numpy 

 

ages = 
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[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,6

1,31] 

x = numpy.percentile(ages, 90) 

print(x) 



Page | 13  

 

Data Distribution 
Earlier in this tutorial we have worked with very small amounts of data in our 
examples, just to understand the different concepts. 

In the real world, the data sets are much bigger, but it can be difficult to gather 

real world data, at least at an early stage of a project. 

How Can we Get Big Data Sets? 

To create big data sets for testing, we use the Python module NumPy, which 
comes with a number of methods to create random data sets, of any size. 

Example 

 

  

Ex0501.py 

""" 

Create an array containing 250 random floats between 0 

and 5 

""" 

import numpy 

 

x = numpy.random.uniform(0.0, 5.0, 250) 

print(x) 
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Histogram 

To visualize the data set we can draw a histogram with the data we collected. 

We will use the Python module Matplotlib to draw a histogram. 

Example 

 

Result: 

 

Ex0502.py 

""" 

Draw a histogram 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = numpy.random.uniform(0.0, 5.0, 250) 

plt.hist(x, 5) 

plt.show() 
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Histogram Explained 

We use the array from the example above to draw a histogram with 5 bars. 

The first bar represents how many values in the array are between 0 and 1. 

The second bar represents how many values are between 1 and 2. 

Etc. 

Which gives us this result: 

• 52 values are between 0 and 1 
• 48 values are between 1 and 2 

• 49 values are between 2 and 3 
• 51 values are between 3 and 4 

• 50 values are between 4 and 5 

Note: The array values are random numbers and will not show the exact same 
result on your computer. 

Big Data Distributions 

An array containing 250 values is not considered very big, but now you know how 
to create a random set of values, and by changing the parameters, you can create 

the data set as big as you want. 

Example 

 

Ex0503.py 

""" 

Create an array with 100000 random numbers, and 

display them using a histogram with 100 bars 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = numpy.random.uniform(0.0, 5.0, 100000) 

plt.hist(x, 100) 

plt.show() 
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Normal Data Distribution 
In the previous chapter we learned how to create a completely random array, of 
a given size, and between two given values. 

In this chapter we will learn how to create an array where the values are 

concentrated around a given value. 

In probability theory this kind of data distribution is known as the normal data 
distribution, or the Gaussian data distribution, after the mathematician Carl 

Friedrich Gauss who came up with the formula of this data distribution. 

Example 

Result: 

 

Ex0601.py 

""" 

A typical normal data distribution 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = numpy.random.normal(5.0, 1.0, 100000) 

plt.hist(x, 100) 

plt.show() 
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Note: A normal distribution graph is also known as the bell curve because of it's 
characteristic shape of a bell. 

Histogram Explained 

We use the array from the numpy.random.normal() method, with 100000 values,  to 

draw a histogram with 100 bars. 

We specify that the mean value is 5.0, and the standard deviation is 1.0. 

Meaning that the values should be concentrated around 5.0, and rarely further 
away than 1.0 from the mean. 

And as you can see from the histogram, most values are between 4.0 and 6.0, 
with a top at approximately 5.0. 
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Scatter Plot 
A scatter plot is a diagram where each value in the data set is represented by a 
dot. 

 
 

The Matplotlib module has a method for drawing scatter plots, it needs two arrays 
of the same length, one for the values of the x-axis, and one for the values of the 

y-axis: 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

The x array represents the age of each car. 

The y array represents the speed of each car. 
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Example 

 

Result: 

 
 

Ex0701.py 

""" 

Use the scatter() method to draw a scatter plot 

diagram 

""" 

import matplotlib.pyplot as plt 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

plt.scatter(x, y) 

plt.show() 
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Scatter Plot Explained 

The x-axis represents ages, and the y-axis represents speeds. 

What we can read from the diagram is that the two fastest cars were both 2 years 
old, and the slowest car was 12 years old. 

Note: It seems that the newer the car, the faster it drives, but that could be a 
coincidence, after all we only registered 13 cars. 

Random Data Distributions 

In Machine Learning the data sets can contain thousands-, or even millions, of 
values. 

You might not have real world data when you are testing an algorithm, you might 
have to use randomly generated values. 

As we have learned in the previous chapter, the NumPy module can help us with 
that! 

Let us create two arrays that are both filled with 1000 random numbers from a 
normal data distribution. 

The first array will have the mean set to 5.0 with a standard deviation of 1.0. 

The second array will have the mean set to 10.0 with a standard deviation of 2.0: 

Example 

Ex0702.py 

""" 

A scatter plot with 1000 dots 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = numpy.random.normal(5.0, 1.0, 1000) 

y = numpy.random.normal(10.0, 2.0, 1000) 

 

plt.scatter(x, y) 

plt.show() 
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Result: 

 
 

Scatter Plot Explained 

We can see that the dots are concentrated around the value 5 on the x-axis, and 
10 on the y-axis. 

We can also see that the spread is wider on the y-axis than on the x-axis. 
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Linear Regression 
The term regression is used when you try to find the relationship between 
variables. 

In Machine Learning, and in statistical modeling, that relationship is used to 

predict the outcome of future events. 

 

Linear Regression 

Linear regression uses the relationship between the data-points to draw a straight 
line through all them. 

This line can be used to predict future values. 

 
 

In Machine Learning, predicting the future is very important. 
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How Does it Work? 

Python has methods for finding a relationship between data-points and to draw a 
line of linear regression. We will show you how to use these methods instead of 

going through the mathematic formula. 

In the example below, the x-axis represents age, and the y-axis represents speed. 

We have registered the age and speed of 13 cars as they were passing a tollbooth. 
Let us see if the data we collected could be used in a linear regression: 

Example 

Result: 

 

Ex0801.py 

""" 

Start by drawing a scatter plot 

""" 

import matplotlib.pyplot as plt 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

plt.scatter(x, y) 

plt.show() 
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Example 

Result: 

 
 

 

Ex0802.py 

""" 

Start by drawing a scatter plot 

""" 

import matplotlib.pyplot as plt 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

plt.scatter(x, y) 

plt.show() 
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Example Explained 

Import the modules you need. 

import matplotlib.pyplot as plt 

from scipy import stats 

Create the arrays that represent the values of the x and y axis: 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

Execute a method that returns some important key values of Linear Regression: 

slope, intercept, r, p, std_err = stats.linregress(x, y) 

Create a function that uses the slope and intercept values to return a new value. 

This new value represents where on the y-axis the corresponding x value will be 
placed: 

def myfunc(x): 

  return slope * x + intercept 

Run each value of the x array through the function. This will result in a new array 

with new values for the y-axis: 

mymodel = list(map(myfunc, x)) 

Draw the original scatter plot: 

plt.scatter(x, y) 

Draw the line of linear regression: 

plt.plot(x, mymodel) 

Display the diagram: 

plt.show() 
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R for Relationship 

It is important to know how the relationship between the values of the x-axis and 
the values of the y-axis is, if there are no relationship the linear regression cannot 

be used to predict anything. 

This relationship - the coefficient of correlation - is called r. 

The r value ranges from -1 to 1, where 0 means no relationship, and 1 (and -1) 

means 100% related. 

Python and the Scipy module will compute this value for you, all you have to do 
is feed it with the x and y values. 

Example 

Note: The result -0.76 shows that there is a relationship, not perfect, but it 

indicates that we could use linear regression in future predictions. 

 

Predict Future Values 

Now we can use the information we have gathered to predict future values. 

Example: Let us try to predict the speed of a 10 years old car. 

To do so, we need the same myfunc() function from the example above: 

Ex0803.py 

""" 

How well does my data fit in a linear regression? 

""" 

from scipy import stats 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

slope, intercept, r, p, std_err = stats.linregress(x, 

y) 

print(r) 
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def myfunc(x): 

  return slope * x + intercept 

Example 

The example predicted a speed at 85.6, which we also could read from the 
diagram: 

  

Ex0804.py 

""" 

Predict the speed of a 10 years old car 

""" 

from scipy import stats 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

 

slope, intercept, r, p, std_err = stats.linregress(x, y) 

 

def myfunc(x): 

  return slope * x + intercept 

 

speed = myfunc(10) 

 

print(speed) 
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Bad Fit? 

Let us create an example where linear regression would not be the best method 
to predict future values. 

Example 

 

Ex0805.py 

""" 

These values for the x- and y-axis should result in a very 

bad fit for linear regression 

""" 

import matplotlib.pyplot as plt 

from scipy import stats 

 

x = 

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 

y = 

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 

 

slope, intercept, r, p, std_err = stats.linregress(x, y) 

 

def myfunc(x): 

  return slope * x + intercept 

 

mymodel = list(map(myfunc, x)) 

 

plt.scatter(x, y) 

plt.plot(x, mymodel) 

plt.show() 
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Result: 

 

And the r for relationship? 

Example 

 

The result: 0.013 indicates a very bad relationship, and tells us that this data set 
is not suitable for linear regression 

Ex0806.py 

""" 

You should get a very low r value 

""" 

import numpy 

from scipy import stats 

 

x = 

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 

y = 

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 

slope, intercept, r, p, std_err = stats.linregress(x, y) 

print(r) 
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Polynomial Regression 
If your data points clearly will not fit a linear regression (a straight line through 
all data points), it might be ideal for polynomial regression. 

Polynomial regression, like linear regression, uses the relationship between the 

variables x and y to find the best way to draw a line through the data points. 

 

How Does it Work? 

Python has methods for finding a relationship between data-points and to draw a 
line of polynomial regression. We will show you how to use these methods instead 
of going through the mathematic formula. 

In the example below, we have registered 18 cars as they were passing a certain 
tollbooth. 

We have registered the car's speed, and the time of day (hour) the passing 
occurred. 

The x-axis represents the hours of the day and the y-axis represents the speed: 
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Example 

 

Result: 

 

Ex0901.py 

""" 

Start by drawing a scatter plot 

""" 

import matplotlib.pyplot as plt 

 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 

y = 

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

 

plt.scatter(x, y) 

plt.show() 
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Example 

 

Result: 

 

Ex0902.py 
""" 

Import numpy and matplotlib then draw the line of Polynomial 

Regression 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 

y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

myline = numpy.linspace(1, 22, 100) 

 

plt.scatter(x, y) 

plt.plot(myline, mymodel(myline)) 

plt.show() 



Page | 33  

 

Example Explained 

Import the modules you need. 

import numpy 

import matplotlib.pyplot as plt 

Create the arrays that represent the values of the x and y axis: 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 

y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

NumPy has a method that lets us make a polynomial model: 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

Then specify how the line will display, we start at position 1, and end at position 
22: 

myline = numpy.linspace(1, 22, 100) 

Draw the original scatter plot: 

plt.scatter(x, y) 

Draw the line of polynomial regression: 

plt.plot(myline, mymodel(myline)) 

Display the diagram:’ 

plt.show() 
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R-Squared 

It is important to know how well the relationship between the values of the x- 
and y-axis is, if there are no relationship the polynomial regression cannot be 

used to predict anything. 

The relationship is measured with a value called the r-squared. 

The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1 
means 100% related. 

Python and the Sklearn module will compute this value for you, all you have to 
do is feed it with the x and y arrays: 

Note: The result 0.94 shows that there is a very good relationship, and we can 
use polynomial regression in future predictions. 

Predict Future Values 

Now we can use the information we have gathered to predict future values. 

Example: Let us try to predict the speed of a car that passes the tollbooth at 

around the time 17:00: 

To do so, we need the same mymodel array from the example above: 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

Ex0903.py 

""" 

How well does my data fit in a polynomial regression? 

""" 

import numpy 

from sklearn.metrics import r2_score 

 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 

y = 

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

print(r2_score(y, mymodel(x))) 
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Example 

 

The example predicted a speed to be 88.87, which we also could read from the 

diagram: 

 

Ex0904.py 

""" 

Predict the speed of a car passing at 17:00 

""" 

import numpy 

from sklearn.metrics import r2_score 

 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 

y = 

[100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

speed = mymodel(17) 

print(speed) 
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Bad Fit? 

Let us create an example where polynomial regression would not be the best 
method to predict future values. 

Example 

Ex0905.py 

""" 

These values for the x- and y-axis should result in a very 

bad fit for polynomial regression 

""" 

import numpy 

import matplotlib.pyplot as plt 

 

x = 

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 

y = 

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 

 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

myline = numpy.linspace(2, 95, 100) 

 

plt.scatter(x, y) 

plt.plot(myline, mymodel(myline)) 

plt.show() 
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Result: 

 And the r-squared value? 

Example 

 

The result: 0.00995 indicates a very bad relationship, and tells us that this data 

set is not suitable for polynomial regression. 

  

Ex0906.py 

""" 

You should get a very low r-squared value 

""" 

import numpy 

from sklearn.metrics import r2_score 

 

x = 

[89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 

y = 

[21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 

 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

print(r2_score(y, mymodel(x))) 

 



Page | 38  

 

Multiple Regression 
Multiple regression is like linear regression, but with more than one independent 
value, meaning that we try to predict a value based on two or more variables. 

Take a look at the data set below, it contains some information about cars. 

Car Model Volume Weight CO2 

Toyota Aygo 1000 790 99 

Mitsubishi Space Star 1200 1160 95 

Skoda Citigo 1000 929 95 

Fiat 500 900 865 90 

Mini Cooper 1500 1140 105 

VW Up! 1000 929 105 

Skoda Fabia 1400 1109 90 

Mercedes A-Class 1500 1365 92 

Ford Fiesta 1500 1112 98 

Audi A1 1600 1150 99 

Hyundai I20 1100 980 99 

Suzuki Swift 1300 990 101 

Ford Fiesta 1000 1112 99 

Honda Civic 1600 1252 94 

Hundai I30 1600 1326 97 

Opel Astra 1600 1330 97 

BMW 1 1600 1365 99 

Mazda 3 2200 1280 104 
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Skoda Rapid 1600 1119 104 

Ford Focus 2000 1328 105 

Ford Mondeo 1600 1584 94 

Opel Insignia 2000 1428 99 

Mercedes C-Class 2100 1365 99 

Skoda Octavia 1600 1415 99 

Volvo S60 2000 1415 99 

Mercedes CLA 1500 1465 102 

Audi A4 2000 1490 104 

Audi A6 2000 1725 114 

Volvo V70 1600 1523 109 

BMW 5 2000 1705 114 

Mercedes E-Class 2100 1605 115 

Volvo XC70 2000 1746 117 

Ford B-Max 1600 1235 104 

BMW 2 1600 1390 108 

Opel Zafira 1600 1405 109 

Mercedes SLK 2500 1395 120 

We can predict the CO2 emission of a car based on the size of the engine, but 
with multiple regression we can throw in more variables, like the weight of the 

car, to make the prediction more accurate. 
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How Does it Work? 

In Python we have modules that will do the work for us. Start by importing the 
Pandas module. 

import pandas 

The Pandas module allows us to read csv files and return a DataFrame object. 

df = pandas.read_csv("data.csv") 

Then make a list of the independent values and call this variable X. 

Put the dependent values in a variable called y. 

X = df[['Weight', 'Volume']] 

y = df['CO2'] 

Tip: It is common to name the list of independent values with a upper case X, 
and the list of dependent values with a lower case y. 

We will use some methods from the sklearn module, so we will have to import 
that module as well: 

from sklearn import linear_model 

From the sklearn module we will use the LinearRegression() method to create a 

linear regression object. 

This object has a method called fit() that takes the independent and dependent 

values as parameters and fills the regression object with data that describes the 
relationship: 

regr = linear_model.LinearRegression() 

regr.fit(X, y) 

Now we have a regression object that are ready to predict CO2 values based on 

a car's weight and volume: 

#predict the CO2 emission of a car where the weight is 2300kg, and 

the volume is 1300cm3: 

predictedCO2 = regr.predict([[2300, 1300]]) 
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Example 

 

We have predicted that a car with 1.3 liter engine, and a weight of 2300 kg, will 

release approximately 107 grams of CO2 for every kilometer it drives. 

Coefficient 

The coefficient is a factor that describes the relationship with an unknown variable. 

Example: if x is a variable, then 2x is x two times. x is the unknown variable, and 

the number 2 is the coefficient. 

In this case, we can ask for the coefficient value of weight against CO2, and for 

volume against CO2. The answer(s) we get tells us what would happen if we 
increase, or decrease, one of the independent values. 

Ex1001.py 

""" 

See the whole example in action 

""" 

import pandas 

from sklearn import linear_model 

 

df = pandas.read_csv("data.csv") 

 

X = df[['Weight', 'Volume']] 

y = df['CO2'] 

 

regr = linear_model.LinearRegression() 

regr.fit(X, y) 

 

#predict the CO2 emission of a car where the weight is 

# 2300kg, and the volume is 1300cm3: 

predictedCO2 = regr.predict([[2300, 1300]]) 

 

print(predictedCO2) 
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Example 

Result:[0.00755095 0.00780526] 

[0.00755095 0.00780526] 

Result Explained 

The result array represents the coefficient values of weight and volume. 

Weight: 0.00755095 
Volume: 0.00780526 

These values tell us that if the weight increase by 1kg, the CO2 emission increases 
by 0.00755095g. 

And if the engine size (Volume) increases by 1 cm3, the CO2 emission increases 
by 0.00780526 g. 

I think that is a fair guess, but let test it! 

We have already predicted that if a car with a 1300cm3 engine weighs 2300kg, 
the CO2 emission will be approximately 107g. 

What if we increase the weight with 1000kg? 

Ex1002.py 

""" 

Print the coefficient values of the regression object 

""" 

import pandas 

from sklearn import linear_model 

 

df = pandas.read_csv("data.csv") 

 

X = df[['Weight', 'Volume']] 

y = df['CO2'] 

 

regr = linear_model.LinearRegression() 

regr.fit(X, y) 

 

print(regr.coef_) 
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Example 

Result: 

[114.75968007]  

 

We have predicted that a car with 1.3 liter engine, and a weight of 3300 kg, will 

release approximately 115 grams of CO2 for every kilometer it drives. 

Which shows that the coefficient of 0.00755095 is correct: 

107.2087328 + (1000 * 0.00755095) = 114.75968 

  

Ex1003.py 

""" 

Copy the example from before, but change the weight from 

2300 to 3300 

""" 

import pandas 

from sklearn import linear_model 

 

df = pandas.read_csv("data.csv") 

 

X = df[['Weight', 'Volume']] 

y = df['CO2'] 

 

regr = linear_model.LinearRegression() 

regr.fit(X, y) 

 

predictedCO2 = regr.predict([[3300, 1300]]) 

 

print(predictedCO2) 
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Scale 

Scale Features 

When your data has different values, and even different measurement units, it 
can be difficult to compare them. What is kilograms compared to meters? Or 

altitude compared to time? 

The answer to this problem is scaling. We can scale data into new values that are 

easier to compare. 

Take a look at the table below, it is the same data set that we used in the multiple 
regression chapter, but this time the volume column contains values 

in liters instead of cm3 (1.0 instead of 1000). 

Car Model Volume Weight CO2 

Toyota Aygo 1.0 790 99 

Mitsubishi Space Star 1.2 1160 95 

Skoda Citigo 1.0 929 95 

Fiat 500 0.9 865 90 

Mini Cooper 1.5 1140 105 

VW Up! 1.0 929 105 

Skoda Fabia 1.4 1109 90 

Mercedes A-Class 1.5 1365 92 

Ford Fiesta 1.5 1112 98 

Audi A1 1.6 1150 99 

Hyundai I20 1.1 980 99 

Suzuki Swift 1.3 990 101 

Ford Fiesta 1.0 1112 99 

Honda Civic 1.6 1252 94 
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Hundai I30 1.6 1326 97 

Opel Astra 1.6 1330 97 

BMW 1 1.6 1365 99 

Mazda 3 2.2 1280 104 

Skoda Rapid 1.6 1119 104 

Ford Focus 2.0 1328 105 

Ford Mondeo 1.6 1584 94 

Opel Insignia 2.0 1428 99 

Mercedes C-Class 2.1 1365 99 

Skoda Octavia 1.6 1415 99 

Volvo S60 2.0 1415 99 

Mercedes CLA 1.5 1465 102 

Audi A4 2.0 1490 104 

Audi A6 2.0 1725 114 

Volvo V70 1.6 1523 109 

BMW 5 2.0 1705 114 

Mercedes E-Class 2.1 1605 115 

Volvo XC70 2.0 1746 117 

Ford B-Max 1.6 1235 104 

BMW 2 1.6 1390 108 

Opel Zafira 1.6 1405 109 

Mercedes SLK 2.5 1395 120 
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It can be difficult to compare the volume 1.0 with the weight 790, but if we scale 
them both into comparable values, we can easily see how much one value is 

compared to the other. 

There are different methods for scaling data, in this tutorial we will use a method 

called standardization. 

The standardization method uses this formula: 

z = (x - u) / s 

Where z is the new value, x is the original value, u is the mean and s is the 

standard deviation. 

If you take the weight column from the data set above, the first value is 790, 

and the scaled value will be: 

(790 - 1292.23) / 238.74 = -2.1 

If you take the volume column from the data set above, the first value is 1.0, 

and the scaled value will be: 

(1.0 - 1.61) / 0.38 = -1.59 

Now you can compare -2.1 with -1.59 instead of comparing 790 with 1.0. 

You do not have to do this manually, the Python sklearn module has a method 
called StandardScaler() which returns a Scaler object with methods for 

transforming data sets. 

https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_mean1
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_std1
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_mean2
https://www.w3schools.com/python/trypandas.asp?filename=demo_ml_scale_std2
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Example 

 

Result: 

Note that the first two values are -2.1 and -1.59, which corresponds to our 
calculations: 

[[-2.10389253 -1.59336644] 

 [-0.55407235 -1.07190106] 

 [-1.52166278 -1.59336644] 

 [-1.78973979 -1.85409913] 

 [-0.63784641 -0.28970299] 

 [-1.52166278 -1.59336644] 

 [-0.76769621 -0.55043568] 

 [ 0.3046118  -0.28970299] 

 [-0.7551301  -0.28970299] 

 [-0.59595938 -0.0289703 ] 

 [-1.30803892 -1.33263375] 

 [-1.26615189 -0.81116837] 

 [-0.7551301  -1.59336644] 

 [-0.16871166 -0.0289703 ] 

 [ 0.14125238 -0.0289703 ] 

 [ 0.15800719 -0.0289703 ] 

 [ 0.3046118  -0.0289703 ] 

 [-0.05142797  1.53542584] 

 [-0.72580918 -0.0289703 ] 

Ex1101.py 

""" 

Scale all values in the Weight and Volume columns 

""" 

import pandas 

from sklearn import linear_model 

from sklearn.preprocessing import StandardScaler 

scale = StandardScaler() 

 

df = pandas.read_csv("data2.csv") 

 

X = df[['Weight', 'Volume']] 

 

scaledX = scale.fit_transform(X) 

 

print(scaledX) 
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 [ 0.14962979  1.01396046] 

 [ 1.2219378  -0.0289703 ] 

 [ 0.5685001   1.01396046] 

 [ 0.3046118   1.27469315] 

 [ 0.51404696 -0.0289703 ] 

 [ 0.51404696  1.01396046] 

 [ 0.72348212 -0.28970299] 

 [ 0.8281997   1.01396046] 

 [ 1.81254495  1.01396046] 

 [ 0.96642691 -0.0289703 ] 

 [ 1.72877089  1.01396046] 

 [ 1.30990057  1.27469315] 

 [ 1.90050772  1.01396046] 

 [-0.23991961 -0.0289703 ] 

 [ 0.40932938 -0.0289703 ] 

 [ 0.47215993 -0.0289703 ] 

 [ 0.4302729   2.31762392]] 

 

Predict CO2 Values 

The task in the Multiple Regression chapter was to predict the CO2 emission from 
a car when you only knew its weight and volume. 

When the data set is scaled, you will have to use the scale when you predict 

values: 
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Example 

 

Result: 

[107.2087328] 

 

  

Ex1102.py 

""" 

Predict the CO2 emission from a 1.3 liter car that weighs 

2300 kilograms 

""" 

import pandas 

from sklearn import linear_model 

from sklearn.preprocessing import StandardScaler 

scale = StandardScaler() 

 

df = pandas.read_csv("data2.csv") 

 

X = df[['Weight', 'Volume']] 

y = df['CO2'] 

 

scaledX = scale.fit_transform(X) 

 

regr = linear_model.LinearRegression() 

regr.fit(scaledX, y) 

 

scaled = scale.transform([[2300, 1.3]]) 

 

predictedCO2 = regr.predict([scaled[0]]) 

print(predictedCO2) 
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Train/Test 

Evaluate Your Model 

In Machine Learning we create models to predict the outcome of certain events, 
like in the previous chapter where we predicted the CO2 emission of a car when 

we knew the weight and engine size. 

To measure if the model is good enough, we can use a method called Train/Test. 

 

What is Train/Test 

Train/Test is a method to measure the accuracy of your model. 

It is called Train/Test because you split the data set into two sets: a training set 
and a testing set. 

80% for training, and 20% for testing. 

You train the model using the training set. 

You test the model using the testing set. 

Train the model means create the model. 

Test the model means test the accuracy of the model. 
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Start With a Data Set 

Start with a data set you want to test. 

Our data set illustrates 100 customers in a shop, and their shopping habits. 

Example 

 

Result: 

The x axis represents the number of minutes before making a purchase. 

The y axis represents the amount of money spent on the purchase. 

 

Ex1201.py 

import numpy 

import matplotlib.pyplot as plt 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

plt.scatter(x, y) 

plt.show() 
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Split Into Train/Test 

The training set should be a random selection of 80% of the original data. 

The testing set should be the remaining 20%. 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

Display the Training Set 

Display the same scatter plot with the training set: 

Example 

 

  

Ex1202.py 

import numpy 

import matplotlib.pyplot as plt 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

plt.scatter(train_x, train_y) 

plt.show() 
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Result: 

It looks like the original data set, so it seems to be a fair selection: 
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Display the Testing Set 

To make sure the testing set is not completely different, we will take a look at the 
testing set as well. 

Example 

Result: 

The testing set also looks like the original data set: 

 

Ex1203.py 

import numpy 

import matplotlib.pyplot as plt 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

plt.scatter(train_x, train_y) 

plt.show() 
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Fit the Data Set 

What does the data set look like? In my opinion I think the best fit would be 
a polynomial regression, so let us draw a line of polynomial regression. 

To draw a line through the data points, we use the plot() method of the matplotlib 

module: 

Example 

 

  

Ex1204.py 

""" 

Draw a polynomial regression line through the data points 

""" 

import numpy 

import matplotlib.pyplot as plt 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 

4)) 

 

myline = numpy.linspace(0, 6, 100) 

 

plt.scatter(train_x, train_y) 

plt.plot(myline, mymodel(myline)) 

plt.show() 
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Result: 

 

The result can back my suggestion of the data set fitting a polynomial regression, 
even though it would give us some weird results if we try to predict values outside 

of the data set. Example: the line indicates that a customer spending 6 minutes 
in the shop would make a purchase worth 200. That is probably a sign of 

overfitting. 

But what about the R-squared score? The R-squared score is a good indicator of 

how well my data set is fitting the model. 

R2 

Remember R2, also known as R-squared? 

It measures the relationship between the x axis and the y axis, and the value 
ranges from 0 to 1, where 0 means no relationship, and 1 means totally related. 

The sklearn module has a method called r2_score() that will help us find this 

relationship. 

In this case we would like to measure the relationship between the minutes a 
customer stays in the shop and how much money they spend. 
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Example 

 

Note: The result 0.799 shows that there is a OK relationship. 

  

Ex1205.py 

""" 

How well does my training data fit in a polynomial 

regression? 

""" 

import numpy 

from sklearn.metrics import r2_score 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 

4)) 

 

r2 = r2_score(train_y, mymodel(train_x)) 

 

print(r2) 
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Bring in the Testing Set 

Now we have made a model that is OK, at least when it comes to training data. 

Now we want to test the model with the testing data as well, to see if gives us 

the same result. 

Example 

 

 

Note: The result 0.809 shows that the model fits the testing set as well, and we 
are confident that we can use the model to predict future values. 
 

  

Ex1206.py 

""" 

Let us find the R2 score when using testing data 

""" 

import numpy 

from sklearn.metrics import r2_score 

numpy.random.seed(2) 

 

x = numpy.random.normal(3, 1, 100) 

y = numpy.random.normal(150, 40, 100) / x 

 

train_x = x[:80] 

train_y = y[:80] 

 

test_x = x[80:] 

test_y = y[80:] 

 

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 

4)) 

 

r2 = r2_score(test_y, mymodel(test_x)) 

 

print(r2) 
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Predict Values 

Now that we have established that our model is OK, we can start predicting new 
values. 

Example 

How much money will a buying customer spend, if she or he stays in the shop for 
5 minutes? 

print(mymodel(5)) 
 

The example predicted the customer to spend 22.88 dollars, as seems to 
correspond to the diagram: 
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Decision Tree 

 
 

In this chapter we will show you how to make a "Decision Tree". A Decision Tree 
is a Flow Chart, and can help you make decisions based on previous experience. 

In the example, a person will try to decide if he/she should go to a comedy show 
or not. 
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Luckily our example person has registered every time there was a comedy show 
in town, and registered some information about the comedian, and also registered 

if he/she went or not. 

Age Experience Rank Nationality Go 

36 10 9 UK NO 

42 12 4 USA NO 

23 4 6 N NO 

52 4 4 USA NO 

43 21 8 USA YES 

44 14 5 UK NO 

66 3 7 N YES 

35 14 9 UK YES 

52 13 7 N YES 

35 5 9 N YES 

24 3 5 USA NO 

18 3 7 UK YES 

45 9 9 UK YES 

Now, based on this data set, Python can create a decision tree that can be used 

to decide if any new shows are worth attending to. 
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How Does it Work? 

First, read the dataset with pandas: 

Example 

To make a decision tree, all data has to be numerical. 

We have to convert the non-numerical columns 'Nationality' and 'Go' into 
numerical values. 

Pandas has a map() method that takes a dictionary with information on how to 

convert the values. 

{'UK': 0, 'USA': 1, 'N': 2} 

Means convert the values 'UK' to 0, 'USA' to 1, and 'N' to 2. 

Example 

 

Ex1301.py 

""" 

Read and print the data set 

""" 

import pandas 

 

df = pandas.read_csv("data3.csv") 

print(df) 

Ex1302.py 

""" 

Change string values into numerical values 

""" 

import pandas 

 

df = pandas.read_csv("data3.csv") 

d = {'UK': 0, 'USA': 1, 'N': 2} 

df['Nationality'] = df['Nationality'].map(d) 

d = {'YES': 1, 'NO': 0} 

df['Go'] = df['Go'].map(d)\ 

print(df) 
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Then we have to separate the feature columns from the target column. 

The feature columns are the columns that we try to predict from, and the target 

column is the column with the values we try to predict. 

Example 

 

Now we can create the actual decision tree, fit it with our details. Start by 

importing the modules we need: 

Ex1303.py 

""" 

X is the feature columns, y is the target column 

""" 

import pandas 

 

df = pandas.read_csv("data3.csv") 

 

d = {'UK': 0, 'USA': 1, 'N': 2} 

df['Nationality'] = df['Nationality'].map(d) 

d = {'YES': 1, 'NO': 0} 

df['Go'] = df['Go'].map(d) 

 

features = ['Age', 'Experience', 'Rank', 'Nationality'] 

 

X = df[features] 

y = df['Go'] 

 

print(X) 

print(y) 
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Example 

 

 

Ex1304.py 

""" 

Create and display a Decision Tree 

""" 

import pandas 

from sklearn import tree 

from sklearn.tree import DecisionTreeClassifier 

import matplotlib.pyplot as plt 

 

df = pandas.read_csv("data3.csv") 

 

d = {'UK': 0, 'USA': 1, 'N': 2} 

df['Nationality'] = df['Nationality'].map(d) 

d = {'YES': 1, 'NO': 0} 

df['Go'] = df['Go'].map(d) 

 

features = ['Age', 'Experience', 'Rank', 'Nationality'] 

 

X = df[features] 

y = df['Go'] 

 

dtree = DecisionTreeClassifier() 

dtree = dtree.fit(X, y) 

 

tree.plot_tree(dtree, feature_names=features) 
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Result Explained 

The decision tree uses your earlier decisions to calculate the odds for you to 
wanting to go see a comedian or not. 

Let us read the different aspects of the decision tree: 

 

Rank 

Rank <= 6.5 means that every comedian with a rank of 6.5 or lower will follow 

the True arrow (to the left), and the rest will follow the False arrow (to the right). 

gini = 0.497 refers to the quality of the split, and is always a number between 0.0 

and 0.5, where 0.0 would mean all of the samples got the same result, and 0.5 

would mean that the split is done exactly in the middle. 

samples = 13 means that there are 13 comedians left at this point in the decision, 

which is all of them since this is the first step. 

value = [6, 7] means that of these 13 comedians, 6 will get a "NO", and 7 will get 

a "GO". 

Gini 

There are many ways to split the samples, we use the GINI method in this tutorial. 

The Gini method uses this formula: 

Gini = 1 - (x/n)2 - (y/n)2 

Where x is the number of positive answers("GO"), n is the number of samples, 

and y is the number of negative answers ("NO"), which gives us this calculation: 

1 - (7 / 13)2 - (6 / 13)2 = 0.497 
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The next step contains two boxes, one box for the comedians with a 'Rank' of 6.5 
or lower, and one box with the rest. 

True - 5 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 5 means that there are 5 comedians left in this branch (5 comedian with 

a Rank of 6.5 or lower). 

value = [5, 0] means that 5 will get a "NO" and 0 will get a "GO". 

False - 8 Comedians Continue: 

Nationality 

Nationality <= 0.5 means that the comedians with a nationality value of less than 

0.5 will follow the arrow to the left (which means everyone from the UK, ), and 

the rest will follow the arrow to the right. 

gini = 0.219 means that about 22% of the samples would go in one direction. 

samples = 8 means that there are 8 comedians left in this branch (8 comedian with 

a Rank higher than 6.5). 

value = [1, 7] means that of these 8 comedians, 1 will get a "NO" and 7 will get a 

"GO". 
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True - 4 Comedians Continue: 

Age 

Age <= 35.5 means that comedians at the age of 35.5 or younger will follow the 

arrow to the left, and the rest will follow the arrow to the right. 

gini = 0.375 means that about 37,5% of the samples would go in one direction. 

samples = 4 means that there are 4 comedians left in this branch (4 comedians 

from the UK). 

value = [1, 3] means that of these 4 comedians, 1 will get a "NO" and 3 will get a 

"GO". 

False - 4 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 4 means that there are 4 comedians left in this branch (4 comedians not 

from the UK). 

value = [0, 4] means that of these 4 comedians, 0 will get a "NO" and 4 will get a 

"GO". 
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True - 2 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 2 means that there are 2 comedians left in this branch (2 comedians at 

the age 35.5 or younger). 

value = [0, 2] means that of these 2 comedians, 0 will get a "NO" and 2 will get a 

"GO". 

False - 2 Comedians Continue: 

Experience 

Experience <= 9.5 means that comedians with 9.5 years of experience, or less, will 

follow the arrow to the left, and the rest will follow the arrow to the right. 

gini = 0.5 means that 50% of the samples would go in one direction. 

samples = 2 means that there are 2 comedians left in this branch (2 comedians 

older than 35.5). 

value = [1, 1] means that of these 2 comedians, 1 will get a "NO" and 1 will get a 

"GO". 
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True - 1 Comedian Ends Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 1 means that there is 1 comedian left in this branch (1 comedian with 

9.5 years of experience or less). 

value = [0, 1] means that 0 will get a "NO" and 1 will get a "GO". 

False - 1 Comedian Ends Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 1 means that there is 1 comedians left in this branch (1 comedian with 

more than 9.5 years of experience). 

value = [1, 0] means that 1 will get a "NO" and 0 will get a "GO". 
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Predict Values 

We can use the Decision Tree to predict new values. 

Example: Should I go see a show starring a 40 years old American comedian, 

with 10 years of experience, and a comedy ranking of 7? 

Example 

 

  

Ex1305.py 

""" 

Use predict() method to predict new values 

""" 

import pandas 

from sklearn import tree 

from sklearn.tree import DecisionTreeClassifier 

 

df = pandas.read_csv("data3.csv") 

 

d = {'UK': 0, 'USA': 1, 'N': 2} 

df['Nationality'] = df['Nationality'].map(d) 

d = {'YES': 1, 'NO': 0} 

df['Go'] = df['Go'].map(d) 

 

features = ['Age', 'Experience', 'Rank', 'Nationality'] 

X = df[features] 

y = df['Go'] 

 

dtree = DecisionTreeClassifier() 

dtree = dtree.fit(X, y) 

 

print(dtree.predict([[40, 10, 7, 1]])) 

 

print("[1] means 'GO'") 

print("[0] means 'NO'") 
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Example 

 

 

Different Results 

You will see that the Decision Tree gives you different results if you run it 
enough times, even if you feed it with the same data. 

That is because the Decision Tree does not give us a 100% certain answer. It is 
based on the probability of an outcome, and the answer will vary. 

  

Ex1306.py 

""" 

What would the answer be if the comedy rank was 6? 

""" 

import pandas 

from sklearn import tree 

from sklearn.tree import DecisionTreeClassifier 

 

df = pandas.read_csv("data3.csv") 

 

d = {'UK': 0, 'USA': 1, 'N': 2} 

df['Nationality'] = df['Nationality'].map(d) 

d = {'YES': 1, 'NO': 0} 

df['Go'] = df['Go'].map(d) 

 

features = ['Age', 'Experience', 'Rank', 'Nationality'] 

X = df[features] 

y = df['Go'] 

 

dtree = DecisionTreeClassifier() 

dtree = dtree.fit(X, y) 

 

print(dtree.predict([[40, 10, 6, 1]])) 

 

print("[1] means 'GO'") 

print("[0] means 'NO'") 
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Confusion Matrix 
It is a table that is used in classification problems to assess where errors in the 
model were made. 

The rows represent the actual classes the outcomes should have been. While the 

columns represent the predictions we have made. Using this table it is easy to 
see which predictions are wrong. 

Creating a Confusion Matrix 

Confusion matrixes can be created by predictions made from a logistic regression. 

For now we will generate actual and predicted values by utilizing NumPy: 

import numpy 

Next we will need to generate the numbers for "actual" and "predicted" values. 

actual = numpy.random.binomial(1, 0.9, size = 1000) 

predicted = numpy.random.binomial(1, 0.9, size = 1000) 

In order to create the confusion matrix we need to import metrics from the 
sklearn module. 

from sklearn import metrics 

Once metrics is imported we can use the confusion matrix function on our actual 

and predicted values. 

confusion_matrix = metrics.confusion_matrix(actual, predicted) 

To create a more interpretable visual display we need to convert the table into a 
confusion matrix display. 

cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix, display_labels = [False, True]) 

Vizualizing the display requires that we import pyplot from matplotlib. 

import matplotlib.pyplot as plt 
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Finally to display the plot we can use the functions plot() and show() from pyplot. 

cm_display.plot() 

plt.show() 

See the whole example in action: 

Example 

Result 

 

Ex1401.py 

import matplotlib.pyplot as plt 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

confusion_matrix = metrics.confusion_matrix(actual, 

predicted) 

 

cm_display = 

metrics.ConfusionMatrixDisplay(confusion_matrix = 

confusion_matrix, display_labels = [False, True]) 

 

cm_display.plot() 

plt.show() 
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Results Explained 

The Confusion Matrix created has four different quadrants: 

True Negative (Top-Left Quadrant) 

False Positive (Top-Right Quadrant) 
False Negative (Bottom-Left Quadrant) 

True Positive (Bottom-Right Quadrant) 

True means that the values were accurately predicted, False means that there 

was an error or wrong prediction. 

Now that we have made a Confusion Matrix, we can calculate different measures 

to quantify the quality of the model. First, lets look at Accuracy. 

Created Metrics 

The matrix provides us with many useful metrics that help us to evaluate out 
classification model. 

The different measures include: Accuracy, Precision, Sensitivity (Recall), 

Specificity, and the F-score, explained below. 

 

Accuracy 

Accuracy measures how often the model is correct. 

How to Calculate 

(True Positive + True Negative) / Total Predictions 

Example 

Accuracy = metrics.accuracy_score(actual, predicted) 
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Result 

0.823 

 

  

Ex1402.py 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

Accuracy = metrics.accuracy_score(actual, predicted) 

 

print(Accuracy) 
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Precision 

Of the positives predicted, what percentage is truly positive? 

How to Calculate 

True Positive / (True Positive + False Positive) 

Precision does not evaluate the correctly predicted negative cases: 

Example 

 

Result 

0.8921348314606742 

 

  

Ex1403.py 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

Precision = metrics.precision_score(actual, predicted) 

 

print(Precision) 
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Sensitivity (Recall) 

Of all the positive cases, what percentage are predicted positive? 

Sensitivity (sometimes called Recall) measures how good the model is at 

predicting positives. 

This means it looks at true positives and false negatives (which are positives that 

have been incorrectly predicted as negative). 

How to Calculate 

True Positive / (True Positive + False Negative) 

Sensitivity is good at understanding how well the model predicts something is 

positive: 

Example 

Result 

0.8937568455640745 

 

  

Ex1404.py 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

Sensitivity_recall = metrics.recall_score(actual, 

predicted) 

 

print(Sensitivity_recall) 
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Specificity 

How well the model is at prediciting negative results? 

Specificity is similar to sensitivity, but looks at it from the persepctive of negative 

results. 

How to Calculate 

True Negative / (True Negative + False Positive) 

Since it is just the opposite of Recall, we use the recall_score function, taking the 

opposite position label: 

Example 

Result 

0.07368421052631578 

  

Ex1405.py 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

Specificity = metrics.recall_score(actual, predicted, 

pos_label=0) 

 

print(Specificity) 
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F-score 

F-score is the "harmonic mean" of precision and sensitivity. 

It considers both false positive and false negative cases and is good for 

imbalanced datasets. 

How to Calculate 

2 * ((Precision * Sensitivity) / (Precision + Sensitivity)) 

This score does not take into consideration the True Negative values: 

Example 

Result 

0.9097909790979098  

 

All calulations in one: 

print({"Accuracy":Accuracy,"Precision":Prec

ision,"Sensitivity_recall":Sensitivity_reca

ll,"Specificity":Specificity,"F1_score":F1_

score}) 
 

  

Ex1406.py 

import numpy 

from sklearn import metrics 

 

actual = numpy.random.binomial(1,.9,size = 1000) 

predicted = numpy.random.binomial(1,.9,size = 1000) 

 

F1_score = metrics.f1_score(actual, predicted) 

 

print(F1_score) 
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Hierarchical Clustering 
Hierarchical clustering is an unsupervised learning method for clustering data 
points. The algorithm builds clusters by measuring the dissimilarities between 
data. Unsupervised learning means that a model does not have to be trained, 

and we do not need a "target" variable. This method can be used on any data to 
visualize and interpret the relationship between individual data points. 

Here we will use hierarchical clustering to group data points and visualize the 

clusters using both a dendrogram and scatter plot. 

 

How does it work? 

We will use Agglomerative Clustering, a type of hierarchical clustering that 
follows a bottom up approach. We begin by treating each data point as its own 
cluster. Then, we join clusters together that have the shortest distance between 

them to create larger clusters. This step is repeated until one large cluster is 
formed containing all of the data points. 

Hierarchical clustering requires us to decide on both a distance and linkage 
method. We will use euclidean distance and the Ward linkage method, which 

attempts to minimize the variance between clusters. 

Example 

Ex1501.py 

""" 

Start by visualizing some data points 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

plt.scatter(x, y) 

plt.show() 
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Result 

 

Now we compute the ward linkage using euclidean distance, and visualize it 

using a dendrogram: 

Ex1502.py 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.cluster.hierarchy import dendrogram, linkage 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

data = list(zip(x, y)) 

 

linkage_data = linkage(data, method='ward', 

metric='euclidean') 

dendrogram(linkage_data) 

 

plt.show() 
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Result 

 

Here, we do the same thing with Python's scikit-learn library. Then, visualize on 
a 2-dimensional plot: 

Example 

Ex1503.py 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.cluster import AgglomerativeClustering 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

data = list(zip(x, y)) 

 

hierarchical_cluster = 

AgglomerativeClustering(n_clusters=2, 

affinity='euclidean', linkage='ward') 

labels = hierarchical_cluster.fit_predict(data) 

 

plt.scatter(x, y, c=labels) 

plt.show() 



Page | 83  

 

 

Result 

 

Example Explained 

Import the modules you need. 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.cluster.hierarchy import dendrogram, linkage 

from sklearn.cluster import AgglomerativeClustering 

Create arrays that resemble two variables in a dataset. Note that while we only 

use two variables here, this method will work with any number of variables: 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

Turn the data into a set of points: 

data = list(zip(x, y)) 

print(data) 
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Result 

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24), 

(6, 22), (10, 21), (12, 21)] 

Compute the linkage between all of the different points. Here we use a simple 
euclidean distance measure and Ward's linkage, which seeks to minimize the 

variance between clusters. 

linkage_data = linkage(data, method='ward', metric='euclidean') 

Finally, plot the results in a dendrogram. This plot will show us the hierarchy of 
clusters from the bottom (individual points) to the top (a single cluster 

consisting of all data points). 

plt.show() lets us visualize the dendrogram instead of just the raw linkage data. 

dendrogram(linkage_data) 

plt.show() 

Result 

 



Page | 85  

 

The scikit-learn library allows us to use hierarchichal clustering in a different 
manner. First, we initialize the AgglomerativeClustering class with 2 clusters, using 

the same euclidean distance and Ward linkage. 

hierarchical_cluster = AgglomerativeClustering(n_clusters=2, 

affinity='euclidean', linkage='ward') 

The .fit_predict method can be called on our data to compute the clusters using 

the defined parameters across our chosen number of clusters. 

labels = hierarchical_cluster.fit_predict(data) print(labels) 

Result: 

[0 0 1 0 0 1 1 0 1 1] 

Finally, if we plot the same data and color the points using the labels assigned 
to each index by the hierarchical clustering method, we can see the cluster each 

point was assigned to: 

plt.scatter(x, y, c=labels) 

plt.show() 

Result 
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Logistic Regression 
Logistic regression aims to solve classification problems. It does this by predicting 
categorical outcomes, unlike linear regression that predicts a continuous outcome. 

In the simplest case there are two outcomes, which is called binomial, an example 

of which is predicting if a tumor is malignant or benign. Other cases have more 
than two outcomes to classify, in this case it is called multinomial. A common 
example for multinomial logistic regression would be predicting the class of an 

iris flower between 3 different species. 

Here we will be using basic logistic regression to predict a binomial variable. This 

means it has only two possible outcomes. 

How does it work? 

In Python we have modules that will do the work for us. Start by importing the 
NumPy module. 

import numpy 

Store the independent variables in X. 

Store the dependent variable in y. 

Below is a sample dataset: 

#X represents the size of a tumor in centimeters. 

X = 

numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 

4.52, 3.69, 5.88]).reshape(-1,1) 

 

#Note: X has to be reshaped into a column from a row for the 

LogisticRegression() function to work. 

#y represents whether or not the tumor is cancerous (0 for "No", 1 

for "Yes"). 

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) 

We will use a method from the sklearn module, so we will have to import that 
module as well: 

from sklearn import linear_model 
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From the sklearn module we will use the LogisticRegression() method to create 
a logistic regression object. 

This object has a method called fit() that takes the independent and dependent 

values as parameters and fills the regression object with data that describes the 

relationship: 

logr = linear_model.LogisticRegression() 

logr.fit(X,y) 

Now we have a logistic regression object that is ready to whether a tumor is 

cancerous based on the tumor size: 

#predict if tumor is cancerous where the size is 3.46mm: 

predicted = logr.predict(numpy.array([3.46]).reshape(-1,1)) 

Example 

Result 
[0] 

We have predicted that a tumor with a size of 3.46mm will not be cancerous. 

Ex1601.py 

""" 

See the whole example in action 

""" 

import numpy 

from sklearn import linear_model 

 

#Reshaped for Logistic function. 

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1) 

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) 

 

logr = linear_model.LogisticRegression() 

logr.fit(X,y) 

 

#predict if tumor is cancerous where the size is 3.46mm: 

predicted = logr.predict(numpy.array([3.46]).reshape(-

1,1)) 

print(predicted) 
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Coefficient 

In logistic regression the coefficient is the expected change in log-odds of 
having the outcome per unit change in X. 

This does not have the most intuitive understanding so let's use it to create 
something that makes more sense, odds. 

Example 

Result 
[[4.03541657]] 

 

This tells us that as the size of a tumor increases by 1mm the odds of it being a tumor increases 

by 4x. 

  

Ex1602.py 

""" 

See the whole example in action 

""" 

import numpy 

from sklearn import linear_model 

 

#Reshaped for Logistic function. 

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1) 

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) 

 

logr = linear_model.LogisticRegression() 

logr.fit(X,y) 

 

log_odds = logr.coef_ 

odds = numpy.exp(log_odds) 

 

print(odds) 
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Probability 

The coefficient and intercept values can be used to find the probability that each 
tumor is cancerous. 

Create a function that uses the model's coefficient and intercept values to 
return a new value. This new value represents probability that the given 

observation is a tumor: 

def logit2prob(logr,x): 

  log_odds = logr.coef_ * x + logr.intercept_ 

  odds = numpy.exp(log_odds) 

  probability = odds / (1 + odds) 

  return(probability) 

Function Explained 

To find the log-odds for each observation, we must first create a formula that 
looks similar to the one from linear regression, extracting the coefficient and the 
intercept. 

log_odds = logr.coef_ * x + logr.intercept_ 

To then convert the log-odds to odds we must exponentiate the log-odds. 

odds = numpy.exp(log_odds) 

Now that we have the odds, we can convert it to probability by dividing it by 1 

plus the odds. 

probability = odds / (1 + odds) 

Let us now use the function with what we have learned to find out the 
probability that each tumor is cancerous. 
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Example 

Result 

  [[0.60749955] 

   [0.19268876] 

   [0.12775886] 

   [0.00955221] 

   [0.08038616] 

   [0.07345637] 

   [0.88362743] 

   [0.77901378] 

   [0.88924409] 

   [0.81293497] 

   [0.57719129] 

   [0.96664243]] 

 

  

Ex1603.py 

""" 

See the whole example in action 

""" 

import numpy 

from sklearn import linear_model 

 

X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 

4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1) 

y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) 

 

logr = linear_model.LogisticRegression() 

logr.fit(X,y) 

 

def logit2prob(logr, X): 

  log_odds = logr.coef_ * X + logr.intercept_ 

  odds = numpy.exp(log_odds) 

  probability = odds / (1 + odds) 

  return(probability) 

 

print(logit2prob(logr, X)) 
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Results Explained 

3.78 0.61 The probability that a tumor with the size 3.78cm is cancerous is 
61%. 

2.44 0.19 The probability that a tumor with the size 2.44cm is cancerous is 
19%. 

2.09 0.13 The probability that a tumor with the size 2.09cm is cancerous is 
13%. 
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Grid Search 
The majority of machine learning models contain parameters that can be adjusted 
to vary how the model learns. For example, the logistic regression model, 
from sklearn, has a parameter C that controls regularization,which affects the 

complexity of the model. 

How do we pick the best value for C? The best value is dependent on the data 

used to train the model. 

 

How does it work? 

One method is to try out different values and then pick the value that gives the 
best score. This technique is known as a grid search. If we had to select the 
values for two or more parameters, we would evaluate all combinations of the 

sets of values thus forming a grid of values. 

Before we get into the example it is good to know what the parameter we are 

changing does. Higher values of C tell the model, the training data resembles real 

world information, place a greater weight on the training data. While lower values 

of C do the opposite. 

 

Using Default Parameters 

First let's see what kind of results we can generate without a grid search using 
only the base parameters. 

To get started we must first load in the dataset we will be working with. 

from sklearn import datasets 

iris = datasets.load_iris() 

Next in order to create the model we must have a set of independent variables X 

and a dependant variable y. 

X = iris['data'] 

y = iris['target'] 
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Now we will load the logistic model for classifying the iris flowers. 

from sklearn.linear_model import LogisticRegression 

Creating the model, setting max_iter to a higher value to ensure that the model 
finds a result. 

Keep in mind the default value for C in a logistic regression model is 1, we will 

compare this later. 

In the example below, we look at the iris data set and try to train a model with 
varying values for C in logistic regression. 

logit = LogisticRegression(max_iter = 10000) 

After we create the model, we must fit the model to the data. 

print(logit.fit(X,y)) 

To evaluate the model we run the score method. 

print(logit.score(X,y)) 

Example 

With the default setting of C = 1, we achieved a score of 0.973. 

Let's see if we can do any better by implementing a grid search with difference 
values of 0.973. 

Ex1701.py 

from sklearn import datasets 

from sklearn.linear_model import LogisticRegression 

 

iris = datasets.load_iris() 

 

X = iris['data'] 

y = iris['target'] 

 

logit = LogisticRegression(max_iter = 10000) 

 

print(logit.fit(X,y)) 

 

print(logit.score(X,y)) 
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Implementing Grid Search 

We will follow the same steps of before except this time we will set a range of 
values for C. 

Knowing which values to set for the searched parameters will take a combination 
of domain knowledge and practice. 

Since the default value for C is 1, we will set a range of values surrounding it. 

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2] 

Next we will create a for loop to change out the values of C and evaluate the 

model with each change. 

First we will create an empty list to store the score within. 

scores = [] 

To change the values of C we must loop over the range of values and update the 

parameter each time. 

for choice in C: 

  logit.set_params(C=choice) 

  logit.fit(X, y) 

  scores.append(logit.score(X, y)) 

With the scores stored in a list, we can evaluate what the best choice of C is. 

print(scores) 
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Example 

Results Explained 

We can see that the lower values of C performed worse than the base 

parameter of 1. However, as we increased the value of C to 1.75 the model 

experienced increased accuracy. 

It seems that increasing C beyond this amount does not help increase model 

accuracy. 

Note on Best Practices 

We scored our logistic regression model by using the same data that was used 
to train it. If the model corresponds too closely to that data, it may not be great 

at predicting unseen data. This statistical error is known as over fitting. 

Ex1702.py 

from sklearn import datasets 

from sklearn.linear_model import LogisticRegression 

 

iris = datasets.load_iris() 

 

X = iris['data'] 

y = iris['target'] 

 

logit = LogisticRegression(max_iter = 10000) 

 

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2] 

 

scores = [] 

 

for choice in C: 

  logit.set_params(C=choice) 

  logit.fit(X, y) 

  scores.append(logit.score(X, y)) 

 

print(scores) 



Page | 96  

 

To avoid being misled by the scores on the training data, we can put aside a 
portion of our data and use it specifically for the purpose of testing the model. 

Refer to the lecture on train/test splitting to avoid being misled and overfitting. 

Categorical Data 
When your data has categories represented by strings, it will be difficult to use 
them to train machine learning models which often only accepts numeric data. 

Instead of ignoring the categorical data and excluding the information from our 

model, you can transform the data so it can be used in your models. 

Take a look at the table below, it is the same data set that we used in the multiple 

regression chapter. 

Example 

import pandas as pd 

 

cars = pd.read_csv('data2.csv') 

print(cars.to_string()) 

In the multiple regression chapter, we tried to predict the CO2 emitted based on 
the volume of the engine and the weight of the car but we excluded information 

about the car brand and model. 

The information about the car brand or the car model might help us make a better 

prediction of the CO2 emitted. 

One Hot Encoding 

We cannot make use of the Car or Model column in our data since they are not 
numeric. A linear relationship between a categorical variable, Car or Model, and 
a numeric variable, CO2, cannot be determined. 

To fix this issue, we must have a numeric representation of the categorical 
variable. One way to do this is to have a column representing each group in the 

category. 
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For each column, the values will be 1 or 0 where 1 represents the inclusion of the 
group and 0 represents the exclusion. This transformation is called one hot 

encoding. 

You do not have to do this manually, the Python Pandas module has a function 

that called get_dummies() which does one hot encoding. 

Example 

Result 

A column was created for every car brand in the Car column. 

Predict CO2 

We can use this additional information alongside the volume and weight to 
predict CO2 

To combine the information, we can use the concat() function from pandas. 

Ex1801.py 

from sklearn import datasets 

from sklearn.linear_model import LogisticRegression 

 

iris = datasets.load_iris() 

 

X = iris['data'] 

y = iris['target'] 

 

logit = LogisticRegression(max_iter = 10000) 

 

C = [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2] 

 

scores = [] 

 

for choice in C: 

  logit.set_params(C=choice) 

  logit.fit(X, y) 

  scores.append(logit.score(X, y)) 

 

print(scores) 
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First we will need to import a couple modules. 

We will start with importing the Pandas. 

import pandas 

The pandas module allows us to read csv files and manipulate DataFrame 

objects: 

cars = pandas.read_csv("data.csv") 

It also allows us to create the dummy variables: 

ohe_cars = pandas.get_dummies(cars[['Car']]) 

Then we must select the independent variables (X) and add the dummy 
variables columnwise. 

Also store the dependent variable in y. 

X = pandas.concat([cars[['Volume', 'Weight']], ohe_cars], axis=1) 

y = cars['CO2'] 

We also need to import a method from sklearn to create a linear model 

from sklearn import linear_model 

Now we can fit the data to a linear regression: 

regr = linear_model.LinearRegression() 

regr.fit(X,y) 

Finally we can predict the CO2 emissions based on the car's weight, volume, 

and manufacturer. 

##predict the CO2 emission of a Volvo where the weight is 2300kg, 

and the volume is 1300cm3: 

predictedCO2 = 

regr.predict([[2300, 1300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]) 
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Example 

Result 

[122.45153299] 

 

We now have a coefficient for the volume, the weight, and each car brand in the 
data set 

 

  

Ex1802.py 

import pandas 

from sklearn import linear_model 

 

cars = pandas.read_csv("data.csv") 

ohe_cars = pandas.get_dummies(cars[['Car']]) 

 

X = pandas.concat([cars[['Volume', 'Weight']], ohe_cars], 

axis=1) 

y = cars['CO2'] 

 

regr = linear_model.LinearRegression() 

regr.fit(X,y) 

 

##predict the CO2 emission of a Volvo where the weight is 

2300kg, and the volume is 1300cm3: 

predictedCO2 = regr.predict([[2300, 

1300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]]) 

 

print(predictedCO2) 
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Dummifying 

It is not necessary to create one column for each group in your category. The 
information can be retained using 1 column less than the number of groups you 

have. 

For example, you have a column representing colors and in that column, you 

have two colors, red and blue. 

Example 

Result 

  color 

0  blue 

1   red 

 

You can create 1 column called red where 1 represents red and 0 represents not 

red, which means it is blue. 

To do this, we can use the same function that we used for one hot encoding, 
get_dummies, and then drop one of the columns. There is an argument, 

drop_first, which allows us to exclude the first column from the resulting table. 

Ex1803.py 

import pandas as pd 

 

colors = pd.DataFrame({'color': ['blue', 'red']}) 

 

print(colors) 
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Example 

Result 
   color_red 

0      False 

1       True 

 

What if you have more than 2 groups? How can the multiple groups be 

represented by 1 less column? 

Let's say we have three colors this time, red, blue and green. When we 

get_dummies while dropping the first column, we get the following table. 

Example 

Result 
   color_green  color_red  color 

0        False      False   blue 

1        False       True    red 

2         True      False  green 

  

Ex1804.py 

import pandas as pd 

 

colors = pd.DataFrame({'color': ['blue', 'red']}) 

dummies = pd.get_dummies(colors, drop_first=True) 

 

print(dummies) 

Ex1805.py 

import pandas as pd 

 

colors = pd.DataFrame({'color': ['blue', 'red', 

'green']}) 

dummies = pd.get_dummies(colors, drop_first=True) 

dummies['color'] = colors['color'] 

 

print(dummies) 
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K-means 
K-means is an unsupervised learning method for clustering data points. The 
algorithm iteratively divides data points into K clusters by minimizing the 
variance in each cluster. 

Here, we will show you how to estimate the best value for K using the elbow 
method, then use K-means clustering to group the data points into clusters. 

How does it work? 

First, each data point is randomly assigned to one of the K clusters. Then, we 
compute the centroid (functionally the center) of each cluster, and reassign 
each data point to the cluster with the closest centroid. We repeat this process 

until the cluster assignments for each data point are no longer changing. 

K-means clustering requires us to select K, the number of clusters we want to 

group the data into. The elbow method lets us graph the inertia (a distance-
based metric) and visualize the point at which it starts decreasing linearly. This 

point is referred to as the "eblow" and is a good estimate for the best value for 
K based on our data. 

Example 

 

  

Ex1901.py 

""" 

Start by visualizing some data points 

""" 

import matplotlib.pyplot as plt 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

plt.scatter(x, y) 

plt.show() 
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Result 

 

Now we utilize the elbow method to visualize the intertia for different values of 
K: 
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Example 

Result 

 

Ex1902.py 

from sklearn.cluster import KMeans 

import matplotlib.pyplot as plt 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

data = list(zip(x, y)) 

inertias = [] 

 

for i in range(1,11): 

    kmeans = KMeans(n_clusters=i) 

    kmeans.fit(data) 

    inertias.append(kmeans.inertia_) 

 

plt.plot(range(1,11), inertias, marker='o') 

plt.title('Elbow method') 

plt.xlabel('Number of clusters') 

plt.ylabel('Inertia') 

plt.show() 
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The elbow method shows that 2 is a good value for K, so we retrain and 
visualize the result: 

Example 

Result 

 

Ex1903.py 

from sklearn.cluster import KMeans 

import matplotlib.pyplot as plt 

 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

 

data = list(zip(x, y)) 

 

kmeans = KMeans(n_clusters=2) 

kmeans.fit(data) 

 

plt.scatter(x, y, c=kmeans.labels_) 

plt.show() 
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Example Explained 

Import the modules you need. 

import matplotlib.pyplot as plt 

from sklearn.cluster import KMeans 

scikit-learn is a popular library for machine learning. 

Create arrays that resemble two variables in a dataset. Note that while we only 

use two variables here, this method will work with any number of variables: 

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

Turn the data into a set of points: 

data = list(zip(x, y)) 

print(data) 

Result: 

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24), 

(6, 22), (10, 21), (12, 21)] 

In order to find the best value for K, we need to run K-means across our data 

for a range of possible values. We only have 10 data points, so the maximum 
number of clusters is 10. So for each value K in range(1,11), we train a K-
means model and plot the intertia at that number of clusters: 

inertias = [] 

 

for i in range(1,11): 
    kmeans = KMeans(n_clusters=i) 

    kmeans.fit(data) 

    inertias.append(kmeans.inertia_) 

 

plt.plot(range(1,11), inertias, marker='o') 
plt.title('Elbow method') 

plt.xlabel('Number of clusters') 

plt.ylabel('Inertia') 

plt.show() 

Result: 
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We can see that the "elbow" on the graph above (where the interia becomes 
more linear) is at K=2. We can then fit our K-means algorithm one more time 

and plot the different clusters assigned to the data: 

kmeans = KMeans(n_clusters=2) 
kmeans.fit(data) 

 

plt.scatter(x, y, c=kmeans.labels_) 

plt.show() 

Result: 
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Bootstrap Aggregation 

(Bagging) 

Bagging 

Methods such as Decision Trees, can be prone to overfitting on the training set 
which can lead to wrong predictions on new data. 

Bootstrap Aggregation (bagging) is a ensembling method that attempts to 
resolve overfitting for classification or regression problems. Bagging aims to 

improve the accuracy and performance of machine learning algorithms. It does 
this by taking random subsets of an original dataset, with replacement, and fits 

either a classifier (for classification) or regressor (for regression) to each 
subset. The predictions for each subset are then aggregated through majority 

vote for classification or averaging for regression, increasing prediction 
accuracy. 

 

Evaluating a Base Classifier 

To see how bagging can improve model performance, we must start by 
evaluating how the base classifier performs on the dataset. If you do not know 
what decision trees are review the lesson on decision trees before moving 

forward, as bagging is an continuation of the concept. 

We will be looking to identify different classes of wines found in Sklearn's wine 

dataset. 

Let's start by importing the necessary modules. 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.tree import DecisionTreeClassifier 

Next we need to load in the data and store it into X (input features) and y 

(target). The parameter as_frame is set equal to True so we do not lose the 
feature names when loading the data. (sklearn version older than 0.23 must 

skip the as_frame argument as it is not supported) 
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data = datasets.load_wine(as_frame = True) 

 

X = data.data 

y = data.target 

In order to properly evaluate our model on unseen data, we need to split X and 

y into train and test sets. For information on splitting data, see the Train/Test 
lesson. 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size 

= 0.25, random_state = 22) 

With our data prepared, we can now instantiate a base classifier and fit it to the 
training data. 

dtree = DecisionTreeClassifier(random_state = 22) 

dtree.fit(X_train,y_train) 

Result: 

DecisionTreeClassifier(random_state=22) 

We can now predict the class of wine the unseen test set and evaluate the 
model performance. 

y_pred = dtree.predict(X_test) 

 

print("Train data accuracy:",accuracy_score(y_true = y_train, 

y_pred = dtree.predict(X_train))) 

print("Test data accuracy:",accuracy_score(y_true = y_test, y_pred 

= y_pred)) 

Result: 

Train data accuracy: 1.0 

Test data accuracy: 0.8222222222222222 
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Example 

The base classifier performs reasonably well on the dataset achieving 82% 

accuracy on the test dataset with the current parameters (Different results may 
occur if you do not have the random_state parameter set). 

Now that we have a baseline accuracy for the test dataset, we can see how the 

Bagging Classifier out performs a single Decision Tree Classifier. 

  

Ex2001.py 

""" 

Import the necessary data and evaluate base classifier 

performance 

""" 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.tree import DecisionTreeClassifier 

 

data = datasets.load_wine(as_frame = True) 

 

X = data.data 

y = data.target 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = 0.25, random_state = 22) 

 

dtree = DecisionTreeClassifier(random_state = 22) 

dtree.fit(X_train,y_train) 

 

y_pred = dtree.predict(X_test) 

 

print("Train data accuracy:",accuracy_score(y_true = 

y_train, y_pred = dtree.predict(X_train))) 

print("Test data accuracy:",accuracy_score(y_true = 

y_test, y_pred = y_pred)) 
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Creating a Bagging Classifier 

For bagging we need to set the parameter n_estimators, this is the number of 
base classifiers that our model is going to aggregate together. 

For this sample dataset the number of estimators is relatively low, it is often the 
case that much larger ranges are explored. Hyperparameter tuning is usually 

done with a grid search, but for now we will use a select set of values for the 
number of estimators. 

We start by importing the necessary model. 

from sklearn.ensemble import BaggingClassifier 

Now lets create a range of values that represent the number of estimators we 
want to use in each ensemble. 

estimator_range = [2,4,6,8,10,12,14,16] 

To see how the Bagging Classifier performs with differing values of n_estimators 

we need a way to iterate over the range of values and store the results from 
each ensemble. To do this we will create a for loop, storing the models and 
scores in separate lists for later vizualizations. 

Note: The default parameter for the base classifier in BaggingClassifier is 

the DicisionTreeClassifier therefore we do not need to set it when instantiating 

the bagging model. 

models = [] 

scores = [] 

 

for n_estimators in estimator_range: 

 

    # Create bagging classifier 

    clf = BaggingClassifier(n_estimators = n_estimators, 

random_state = 22) 
 

    # Fit the model 

    clf.fit(X_train, y_train) 

 

    # Append the model and score to their respective list 

    models.append(clf) 

    scores.append(accuracy_score(y_true = y_test, y_pred = 

clf.predict(X_test))) 

https://www.w3schools.com/python/python_ml_grid_search.asp
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With the models and scores stored, we can now visualize the improvement in 
model performance. 

import matplotlib.pyplot as plt 

 

# Generate the plot of scores against number of estimators 

plt.figure(figsize=(9,6)) 
plt.plot(estimator_range, scores) 

 

# Adjust labels and font (to make visable) 

plt.xlabel("n_estimators", fontsize = 18) 

plt.ylabel("score", fontsize = 18) 

plt.tick_params(labelsize = 16) 

 

# Visualize plot 

plt.show() 
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Example 

 

  

Ex2002.py 

""" 

Import the necessary data and evaluate base classifier 

performance 

""" 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.tree import DecisionTreeClassifier 

 

data = datasets.load_wine(as_frame = True) 

 

X = data.data 

y = data.target 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = 0.25, random_state = 22) 

 

dtree = DecisionTreeClassifier(random_state = 22) 

dtree.fit(X_train,y_train) 

 

y_pred = dtree.predict(X_test) 

 

print("Train data accuracy:",accuracy_score(y_true = 

y_train, y_pred = dtree.predict(X_train))) 

print("Test data accuracy:",accuracy_score(y_true = 

y_test, y_pred = y_pred)) 
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Result 

 

Results Explained 

By iterating through different values for the number of estimators we can see 
an increase in model performance from 82.2% to 95.5%. After 14 estimators 
the accuracy begins to drop, again if you set a different random_state the 

values you see will vary. That is why it is best practice to use cross validation to 
ensure stable results. 

In this case, we see a 13.3% increase in accuracy when it comes to identifying 
the type of the wine. 

 

  

https://www.w3schools.com/python/python_ml_cross_validation.asp
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Another Form of Evaluation 

As bootstrapping chooses random subsets of observations to create classifiers, 
there are observations that are left out in the selection process. These "out-of-

bag" observations can then be used to evaluate the model, similarly to that of a 
test set. Keep in mind, that out-of-bag estimation can overestimate error in 

binary classification problems and should only be used as a compliment to other 
metrics. 

We saw in the last exercise that 12 estimators yielded the highest accuracy, so 
we will use that to create our model. This time setting the 

parameter oob_score to true to evaluate the model with out-of-bag score. 

Example 

Since the samples used in OOB and the test set are different, and the dataset is 

relatively small, there is a difference in the accuracy. It is rare that they would 

Ex2003.py 

""" 

Create a model with out-of-bag metric 

""" 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import BaggingClassifier 

 

data = datasets.load_wine(as_frame = True) 

 

X = data.data 

y = data.target 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = 0.25, random_state = 22) 

 

oob_model = BaggingClassifier(n_estimators = 12, 

oob_score = True,random_state = 22) 

 

oob_model.fit(X_train, y_train) 

 

print(oob_model.oob_score_) 
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be exactly the same, again OOB should be used quick means for estimating 
error, but is not the only evaluation metric. 

Generating Decision Trees from Bagging 

Classifier 

As was seen in the Decision Tree lesson, it is possible to graph the decision tree 
the model created. It is also possible to see the individual decision trees that 

went into the aggregated classifier. This helps us to gain a more intuitive 
understanding on how the bagging model arrives at its predictions. 

Note: This is only functional with smaller datasets, where the trees are 
relatively shallow and narrow making them easy to visualize. 

We will need to import plot_tree function from sklearn.tree. The different trees 

can be graphed by changing the estimator you wish to visualize. 

https://www.w3schools.com/python/python_ml_decision_tree.asp
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Example 

 

 

Ex2004.py 

""" 

Generate Decision Trees from Bagging Classifier 

""" 

import matplotlib.pyplot as plt 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import BaggingClassifier 

from sklearn.tree import plot_tree 

 

data = datasets.load_wine() 

 

X = data.data 

y = data.target 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = 0.25, random_state = 22) 

 

oob_model = BaggingClassifier(n_estimators = 12, 

oob_score = True,random_state = 22) 

 

oob_model.fit(X_train, y_train) 

 

clf = BaggingClassifier(n_estimators = 12, oob_score = 

True,random_state = 22) 

 

clf.fit(X_train, y_train) 

 

plt.figure(figsize=(30, 20)) 

 

plot_tree(clf.estimators_[0]) 
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Example 

Result 

 

Here we can see just the first decision tree that was used to vote on the final 

prediction. Again, by changing the index of the classifier you can see each of 
the trees that have been aggregated. 

Ex2003.py 

""" 

Create a model with out-of-bag metric 

""" 

from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import BaggingClassifier 

 

data = datasets.load_wine(as_frame = True) 

 

X = data.data 

y = data.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = 0.25, random_state = 22) 

oob_model = BaggingClassifier(n_estimators = 12, 

oob_score = True,random_state = 22) 

oob_model.fit(X_train, y_train) 

 

print(oob_model.oob_score_) 



Page | 120  

 

Cross Validation 
When adjusting models we are aiming to increase overall model performance on 
unseen data. Hyperparameter tuning can lead to much better performance on 
test sets. However, optimizing parameters to the test set can lead information 

leakage causing the model to preform worse on unseen data. To correct for this 
we can perform cross validation. 

To better understand CV, we will be performing different methods on the iris 

dataset. Let us first load in and separate the data. 

from sklearn import datasets 

 

X, y = datasets.load_iris(return_X_y=True) 

There are many methods to cross validation, we will start by looking at k-fold 

cross validation. 

 

K-Fold 

The training data used in the model is split, into k number of smaller sets, to be 
used to validate the model. The model is then trained on k-1 folds of training 
set. The remaining fold is then used as a validation set to evaluate the model. 

As we will be trying to classify different species of iris flowers we will need to 

import a classifier model, for this exercise we will be using 
a DecisionTreeClassifier. We will also need to import CV modules from sklearn. 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import KFold, cross_val_score 

With the data loaded we can now create and fit a model for evaluation. 

clf = DecisionTreeClassifier(random_state=42) 

Now let's evaluate our model and see how it performs on each k-fold. 

k_folds = KFold(n_splits = 5) 

 

scores = cross_val_score(clf, X, y, cv = k_folds) 
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It is also good pratice to see how CV performed overall by averaging the scores 
for all folds. 

Example 

Stratified K-Fold 

In cases where classes are imbalanced we need a way to account for the 
imbalance in both the train and validation sets. To do so we can stratify the 

target classes, meaning that both sets will have an equal proportion of all 
classes. 

Ex2101.py 

""" 

Run k-fold CV 

""" 

from sklearn import datasets 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import KFold, 

cross_val_score 

 

X, y = datasets.load_iris(return_X_y=True) 

 

clf = DecisionTreeClassifier(random_state=42) 

 

k_folds = KFold(n_splits = 5) 

 

scores = cross_val_score(clf, X, y, cv = k_folds) 

 

print("Cross Validation Scores: ", scores) 

print("Average CV Score: ", scores.mean()) 

print("Number of CV Scores used in Average: ", 

len(scores)) 
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Example 

While the number of folds is the same, the average CV increases from the basic 
k-fold when making sure there is stratified classes. 

Leave-One-Out (LOO) 

Instead of selecting the number of splits in the training data set like k-fold 
LeaveOneOut, utilize 1 observation to validate and n-1 observations to train. 
This method is an exaustive technique. 

Ex2102.py 

from sklearn import datasets 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import StratifiedKFold, 

cross_val_score 

 

X, y = datasets.load_iris(return_X_y=True) 

 

clf = DecisionTreeClassifier(random_state=42) 

 

sk_folds = StratifiedKFold(n_splits = 5) 

 

scores = cross_val_score(clf, X, y, cv = sk_folds) 

 

print("Cross Validation Scores: ", scores) 

print("Average CV Score: ", scores.mean()) 

print("Number of CV Scores used in Average: ", 

len(scores)) 
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Example 

We can observe that the number of cross validation scores performed is equal 
to the number of observations in the dataset. In this case there are 150 

observations in the iris dataset. 

The average CV score is 94%. 

 

Leave-P-Out (LPO) 

Leave-P-Out is simply a nuanced diffence to the Leave-One-Out idea, in that we 
can select the number of p to use in our validation set. 

Ex2103.py 

""" 

Run LOO CV 

""" 

from sklearn import datasets 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import LeaveOneOut, 

cross_val_score 

 

X, y = datasets.load_iris(return_X_y=True) 

 

clf = DecisionTreeClassifier(random_state=42) 

 

loo = LeaveOneOut() 

 

scores = cross_val_score(clf, X, y, cv = loo) 

 

print("Cross Validation Scores: ", scores) 

print("Average CV Score: ", scores.mean()) 

print("Number of CV Scores used in Average: ", 

len(scores)) 
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Example 

As we can see this is an exhaustive method we many more scores being 

calculated than Leave-One-Out, even with a p = 2, yet it achieves roughly the 
same average CV score. 

 

Shuffle Split 

Unlike KFold, ShuffleSplit leaves out a percentage of the data, not to be used 

in the train or validation sets. To do so we must decide what the train and test 

sizes are, as well as the number of splits. 

Ex2104.py 

""" 

Run LPO CV 

""" 

from sklearn import datasets 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import LeavePOut, 

cross_val_score 

 

X, y = datasets.load_iris(return_X_y=True) 

 

clf = DecisionTreeClassifier(random_state=42) 

 

lpo = LeavePOut(p=2) 

 

scores = cross_val_score(clf, X, y, cv = lpo) 

 

print("Cross Validation Scores: ", scores) 

print("Average CV Score: ", scores.mean()) 

print("Number of CV Scores used in Average: ", 

len(scores)) 
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Example 

Ending Notes 

These are just a few of the CV methods that can be applied to models. There 
are many more cross validation classes, with most models having their own 

class. Check out sklearns cross validation for more CV options. 

  

Ex2105.py 

""" 

Run Shuffle Split CV 

""" 

from sklearn import datasets 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import ShuffleSplit, 

cross_val_score 

 

X, y = datasets.load_iris(return_X_y=True) 

 

clf = DecisionTreeClassifier(random_state=42) 

 

ss = ShuffleSplit(train_size=0.6, test_size=0.3, n_splits 

= 5) 

 

scores = cross_val_score(clf, X, y, cv = ss) 

 

print("Cross Validation Scores: ", scores) 

print("Average CV Score: ", scores.mean()) 

print("Number of CV Scores used in Average: ", 

len(scores)) 
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AUC - ROC Curve 
In classification, there are many different evaluation metrics. The most popular 
is accuracy, which measures how often the model is correct. This is a great 
metric because it is easy to understand and getting the most correct guesses is 

often desired. There are some cases where you might consider using another 
evaluation metric. 

Another common metric is AUC, area under the receiver operating 

characteristic (ROC) curve. The Reciever operating characteristic curve plots 
the true positive (TP) rate versus the false positive (FP) rate at different 

classification thresholds. The thresholds are different probability cutoffs that 
separate the two classes in binary classification. It uses probability to tell us 

how well a model separates the classes. 

 

Imbalanced Data 

Suppose we have an imbalanced data set where the majority of our data is of 
one value. We can obtain high accuracy for the model by predicting the majority 
class. 
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Example 

Although we obtain a very high accuracy, the model provided no information 
about the data so it's not useful. We accurately predict class 1 100% of the time 
while inaccurately predict class 0 0% of the time. At the expense of accuracy, it 

might be better to have a model that can somewhat separate the two classes. 

Ex2201.py 

import numpy as np 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

ratio = .95 

n_0 = int((1-ratio) * n) 

n_1 = int(ratio * n) 

 

y = np.array([0] * n_0 + [1] * n_1) 

# below are the probabilities obtained from a 

hypothetical model that always predicts the majority 

class 

# probability of predicting class 1 is going to be 100% 

y_proba = np.array([1]*n) 

y_pred = y_proba > .5 

 

print(f'accuracy score: {accuracy_score(y, y_pred)}') 

cf_mat = confusion_matrix(y, y_pred) 

print('Confusion matrix') 

print(cf_mat) 

print(f'class 0 accuracy: {cf_mat[0][0]/n_0}') 

print(f'class 1 accuracy: {cf_mat[1][1]/n_1}') 
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Example 

For the second set of predictions, we do not have as high of an accuracy score 
as the first but the accuracy for each class is more balanced. Using accuracy as 

an evaluation metric we would rate the first model higher than the second even 
though it doesn't tell us anything about the data. 

In cases like this, using another evaluation metric like AUC would be preferred. 

import matplotlib.pyplot as plt 

 

def plot_roc_curve(true_y, y_prob): 

    """ 

    plots the roc curve based of the probabilities 

    """ 

 

Ex2202.py 

import numpy as np 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

ratio = .95 

n_0 = int((1-ratio) * n) 

n_1 = int(ratio * n) 

 

y = np.array([0] * n_0 + [1] * n_1) 

 

# below are the probabilities obtained from a 

hypothetical model that doesn't always predict the mode 

y_proba_2 = np.array( 

    np.random.uniform(0, .7, n_0).tolist() + 

    np.random.uniform(.3, 1,  n_1).tolist() 

) 

y_pred_2 = y_proba_2 > .5 

 

print(f'accuracy score: {accuracy_score(y, y_pred_2)}') 

cf_mat = confusion_matrix(y, y_pred_2) 

print('Confusion matrix') 

print(cf_mat) 

print(f'class 0 accuracy: {cf_mat[0][0]/n_0}') 

print(f'class 1 accuracy: {cf_mat[1][1]/n_1}') 
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    fpr, tpr, thresholds = roc_curve(true_y, y_prob) 

    plt.plot(fpr, tpr) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 
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Example 

Ex2203.py 

""" 

Model 1 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

ratio = .95 

n_0 = int((1 - ratio) * n) 

n_1 = int(ratio * n) 

 

y = np.array([0] * n_0 + [1] * n_1) 

 

# below are the probabilities obtained from a 

hypothetical model that always predicts the majority 

class 

# probability of predicting class 1 is going to be 100% 

y_proba = np.array([1] * n) 

y_pred = y_proba > .5 

 

 

def plot_roc_curve(true_y, y_prob): 

    """ 

    plots the roc curve based of the probabilities 

    """ 

 

    fpr, tpr, thresholds = roc_curve(true_y, y_prob) 

    plt.plot(fpr, tpr) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

 

 

plot_roc_curve(y, y_proba) 

print(f'model 1 AUC score: {roc_auc_score(y, y_proba)}') 
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Result 

 

model 1 AUC score: 0.5 
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Example 
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Ex2204.py 

""" 

Model 2 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

ratio = .95 

n_0 = int((1 - ratio) * n) 

n_1 = int(ratio * n) 

 

y = np.array([0] * n_0 + [1] * n_1) 

 

# below are the probabilities obtained from a 

hypothetical model that doesn't always predict the mode 

y_proba_2 = np.array( 

    np.random.uniform(0, .7, n_0).tolist() + 

    np.random.uniform(.3, 1, n_1).tolist() 

) 

y_pred_2 = y_proba_2 > .5 

 

 

def plot_roc_curve(true_y, y_prob): 

    """ 

    plots the roc curve based of the probabilities 

    """ 

 

    fpr, tpr, thresholds = roc_curve(true_y, y_prob) 

    plt.plot(fpr, tpr) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

 

 

plot_roc_curve(y, y_proba_2) 

print(f'model 2 AUC score: {roc_auc_score(y, 

y_proba_2)}') 
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Result 

 

model 2 AUC score: 0.8270551578947367 

 

An AUC score of around .5 would mean that the model is unable to make a 

distinction between the two classes and the curve would look like a line with a 
slope of 1. An AUC score closer to 1 means that the model has the ability to 

separate the two classes and the curve would come closer to the top left corner 
of the graph. 
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Probabilities 

Because AUC is a metric that utilizes probabilities of the class predictions, we 
can be more confident in a model that has a higher AUC score than one with a 

lower score even if they have similar accuracies. 

In the data below, we have two sets of probabilites from hypothetical models. 

The first has probabilities that are not as "confident" when predicting the two 
classes (the probabilities are close to .5). The second has probabilities that are 

more "confident" when predicting the two classes (the probabilities are close to 
the extremes of 0 or 1). 

Example 

Ex2205.py 

import numpy as np 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

y = np.array([0] * n + [1] * n) 

# 

y_prob_1 = np.array( 

    np.random.uniform(.25, .5, n//2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.5, .75, n//2).tolist() 

) 

y_prob_2 = np.array( 

    np.random.uniform(0, .4, n//2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.6, 1, n//2).tolist() 

) 

 

print(f'model 1 accuracy score: {accuracy_score(y, 

y_prob_1>.5)}') 

print(f'model 2 accuracy score: {accuracy_score(y, 

y_prob_2>.5)}') 

 

print(f'model 1 AUC score: {roc_auc_score(y, y_prob_1)}') 

print(f'model 2 AUC score: {roc_auc_score(y, y_prob_2)}') 
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Example 
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Ex2206.py 

""" 

Plot model 1 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

y = np.array([0] * n + [1] * n) 

y_prob_1 = np.array( 

    np.random.uniform(.25, .5, n // 2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.5, .75, n // 2).tolist() 

) 

y_prob_2 = np.array( 

    np.random.uniform(0, .4, n // 2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.6, 1, n // 2).tolist() 

) 

 

 

def plot_roc_curve(true_y, y_prob): 

    """ 

    plots the roc curve based of the 

probabilities 

    """ 

    fpr, tpr, thresholds = roc_curve(true_y, 

y_prob) 

    plt.plot(fpr, tpr) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

 

plot_roc_curve(y, y_prob_1) 
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Result 
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Example 

Even though the accuracies for the two models are similar, the model with the 

higher AUC score will be more reliable because it takes into account the 
predicted probability. It is more likely to give you higher accuracy when 

predicting future data. 

Ex2207.py 

""" 

Plot model 2 

""" 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import accuracy_score, 

confusion_matrix, roc_auc_score, roc_curve 

 

n = 10000 

y = np.array([0] * n + [1] * n) 

# 

y_prob_1 = np.array( 

    np.random.uniform(.25, .5, n // 2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.5, .75, n // 2).tolist() 

) 

y_prob_2 = np.array( 

    np.random.uniform(0, .4, n // 2).tolist() + 

    np.random.uniform(.3, .7, n).tolist() + 

    np.random.uniform(.6, 1, n // 2).tolist() 

) 

 

def plot_roc_curve(true_y, y_prob): 

    """ 

    plots the roc curve based of the probabilities 

    """ 

    fpr, tpr, thresholds = roc_curve(true_y, y_prob) 

    plt.plot(fpr, tpr) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

 

fpr, tpr, thresholds = roc_curve(y, y_prob_2) 

plt.plot(fpr, tpr) 
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K-nearest neighbors (KNN) 
KNN is a simple, supervised machine learning (ML) algorithm that can be used 
for classification or regression tasks - and is also frequently used in missing 
value imputation. It is based on the idea that the observations closest to a 

given data point are the most "similar" observations in a data set, and we can 
therefore classify unforeseen points based on the values of the closest existing 
points. By choosing K, the user can select the number of nearby observations to 

use in the algorithm. 

Here, we will show you how to implement the KNN algorithm for classification, 

and show how different values of K affect the results. 

 

How does it work? 

K is the number of nearest neighbors to use. For classification, a majority vote 
is used to determined which class a new observation should fall into. Larger 
values of K are often more robust to outliers and produce more stable decision 

boundaries than very small values (K=3 would be better than K=1, which might 
produce undesirable results. 

Example 

Ex2301.py 

""" 

Start by visualizing some data points 

""" 

import matplotlib.pyplot as plt 

 

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1] 

 

plt.scatter(x, y, c=classes) 

plt.show() 
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Result 

 

Now we fit the KNN algorithm with K=1: 

from sklearn.neighbors import KNeighborsClassifier 

 

data = list(zip(x, y)) 

knn = KNeighborsClassifier(n_neighbors=1) 

 

knn.fit(data, classes) 

And use it to classify a new data point: 
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Example 

 

Now we do the same thing, but with a higher K value which changes the 

prediction: 

Ex2302.py 

import matplotlib.pyplot as plt 

from sklearn.neighbors import KNeighborsClassifier 

 

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1] 

 

data = list(zip(x, y)) 

knn = KNeighborsClassifier(n_neighbors=1) 

 

knn.fit(data, classes) 

 

new_x = 8 

new_y = 21 

new_point = [(new_x, new_y)] 

 

prediction = knn.predict(new_point) 

 

plt.scatter(x + [new_x], y + [new_y], c=classes + 

[prediction[0]]) 

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: 

{prediction[0]}") 

plt.show() 
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Example 

 

Ex2303.py 

import matplotlib.pyplot as plt 

from sklearn.neighbors import KNeighborsClassifier 

 

x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1] 

 

data = list(zip(x, y)) 

knn = KNeighborsClassifier(n_neighbors=5) 

 

knn.fit(data, classes) 

 

new_x = 8 

new_y = 21 

new_point = [(new_x, new_y)] 

 

prediction = knn.predict(new_point) 

 

plt.scatter(x + [new_x], y + [new_y], c=classes + 

[prediction[0]]) 

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: 

{prediction[0]}") 

plt.show() 
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Result 

 
 

Example Explained 

Import the modules you need. 

scikit-learn is a popular library for machine learning in Python. 

import matplotlib.pyplot as plt 

from sklearn.neighbors import KNeighborsClassifier 

Create arrays that resemble variables in a dataset. We have two input features 
(x and y) and then a target class (class). The input features that are pre-labeled 

with our target class will be used to predict the class of new data. Note that 

while we only use two input features here, this method will work with any 
number of variables: 
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x = [4, 5, 10, 4, 3, 11, 14 , 8, 10, 12] 

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21] 

classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1] 

Turn the input features into a set of points: 

data = list(zip(x, y)) 

print(data) 

Result: 

[(4, 21), (5, 19), (10, 24), (4, 17), (3, 16), (11, 25), (14, 24), 

(8, 22), (10, 21), (12, 21)] 

Using the input features and target class, we fit a KNN model on the model 

using 1 nearest neighbor: 

knn = KNeighborsClassifier(n_neighbors=1) 

knn.fit(data, classes) 

Then, we can use the same KNN object to predict the class of new, unforeseen 

data points. First we create new x and y features, and then call knn.predict() on 

the new data point to get a class of 0 or 1: 

new_x = 8 

new_y = 21 
new_point = [(new_x, new_y)] 

prediction = knn.predict(new_point) 

print(prediction) 

Result: 

[0] 

When we plot all the data along with the new point and class, we can see it's 

been labeled blue with the 1 class. The text annotation is just to highlight the 

location of the new point: 

plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]]) 

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: 
{prediction[0]}") 

plt.show() 
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Result: 

 

However, when we changes the number of neighbors to 5, the number of points 
used to classify our new point changes. As a result, so does the classification of 

the new point: 

knn = KNeighborsClassifier(n_neighbors=5) 

knn.fit(data, classes) 

prediction = knn.predict(new_point) 

print(prediction) 

Result: 

[1] 

When we plot the class of the new point along with the older points, we note 
that the color has changed based on the associated class label: 
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plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]]) 

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: 

{prediction[0]}") 

plt.show() 

Result: 
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